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Abstract

Recently, deep learning-based segmentation models have been widely applied in the

ophthalmic field. This study presents the complete process of constructing an orbital

computed tomography (CT) segmentation model based on U-Net. For supervised

learning, a labor-intensive and time-consuming process is required. The method

of labeling with super-resolution to efficiently mask the ground truth on orbital CT

images is introduced. Also, the volume of interest is cropped as part of the pre-

processing of the dataset. Then, after extracting the volumes of interest of the

orbital structures, the model for segmenting the key structures of the orbital CT

is constructed using U-Net, with sequential 2D slices that are used as inputs and

two bi-directional convolutional long-term short memories for conserving the inter-

slice correlations. This study primarily focuses on the segmentation of the eyeball,

optic nerve, and extraocular muscles. The evaluation of the segmentation reveals

the potential application of segmentation to orbital CT images using deep learning

methods.

Introduction

The orbit is a small and complicated space of approximately

30.1 cm3  that contains important structures such as the

eyeball, nerves, extraocular muscles, supportive tissues, and

vessels for vision and eyeball movements1 . Orbital tumors

are abnormal tissue growths in the orbit, and some of

them threaten patients' vision or eyeball movement, which

may lead to fatal dysfunction. To conserve patients' visual

function, clinicians must decide on the treatment modalities

based on the tumor characteristics, and a surgical biopsy is

generally inevitable. This compact and crowded area often

makes it challenging for clinicians to perform a biopsy without

damaging the normal structure. The deep learning-based

image analysis of pathology for determining the condition of

the orbit could help in avoiding unnecessary or avoidable

injury to the orbital tissues during biopsy2 . One method of

image analysis for orbital tumors is tumor detection and

segmentation. However, the collection of large amounts

of data for CT images containing orbital tumors is limited
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due to their low incidence3 . The other efficient method

for computational tumor diagnosis4  involves comparing the

tumor to the normal structures of the orbit. The number of

orbital CT images in normal structures is relatively larger than

that in tumors. Therefore, the segmentation of normal orbital

structures is the first step to achieve this goal.

This study presents the entire process of deep learning-based

orbital structure segmentation, including the data collection,

pre-processing, and subsequent modeling. The study is

intended to be a resource for clinicians interested in using

the current method to efficiently generate a masked dataset

and for ophthalmologists requiring information about pre-

processing and modeling for orbital CT images.This article

presents a new method for orbital structure segmentation

and sequential U-Net, a sequential 2D segmentation model

based on a representative deep-learning solution in U-Net

for medical image segmentation. The protocol describes the

detailed procedure of orbit segmentation, including (1) how

to use a masking tool for the ground truth of orbit structure

segmentation, (2) the steps required for the pre-processing

of the orbital images, and (3) how to train the segmentation

model and evaluate the segmentation performance.

For supervised learning, four experienced ophthalmologists

who had been board certified for over 5 years manually

annotated the masks of the eyeball, optic nerve, and

extraocular muscles. All the ophthalmologists used the

masking software program (MediLabel, see the Table of

Materials), which uses super-resolution for efficient masking

on CT scans. The masking software has the following semi-

automatic features: (1) SmartPencil, which generates super

pixel map clusters with similar values of image intensity5 ;

(2) SmartFill, which generates segmentation masks by

computing the energy function of the ongoing foreground and

background6,7 ; and (3) AutoCorrection, which makes the

borders of the segmentation masks clean and consistent with

the original image. Example images of the semi-automatic

features are shown in Figure 1. The detailed steps of manual

masking are provided in the protocol section (step 1).

The next step is the pre-processing of the orbital CT scans.

To obtain the orbital volumes of interest (VOIs), the areas of

the orbit where the eyeball, muscle, and nerve are located in

normal conditions are identified, and these areas are cropped.

The dataset has a high resolution, with <1 mm in-plane voxel

resolution and slice thickness, so the interpolation process

is skipped. Instead, window clipping is conducted at the 48

HU clipping level and the 400 HU window. After the cropping

and window clipping, three serial slices of the orbit VOIs are

generated for the segmentation model input8 . The protocol

section (step 2) provides details on the pre-processing steps.

U-Net9  is a widely used segmentation model for medical

images. The U-Net architecture comprises an encoder, which

extracts the features of the medical images, and a decoder,

which presents the discriminative features semantically.

When employing U-Net for CT scans, the convolutional

layers consist of 3D filters10,11 . This is a challenge because

the computation of 3D filters requires a large memory

capacity. To reduce the memory requirements for 3D U-

Net, SEQ-UNET8 , wherein a set of sequential 2D slices

are used in the U-Net, was proposed. To prevent the loss

of spatiotemporal correlations between the 2D image slices

of the 3D CT scan, two bi-directional convolutional long-

term short memories (C-LSTMs)12  are employed in basic

U-Net. The first bi-directional C-LSTM extracts the inter-

slice correlations at the end of the encoder. The second

bi-directional C-LSTM, after the output of the decoder,

transforms the semantic segmentation information in the
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dimensions of the slice sequence into a single image

segmentation. The architecture of SEQ-UNET is shown

in Figure 2. The implementation codes are available at

github.com/SleepyChild1005/OrbitSeg, and the usage of the

codes is detailed in the protocol section (step 3).

Protocol

The present work was performed with the approval of the

Institutional Review Board (IRB) of the Catholic Medical

Center, and the privacy, confidentiality, and security of the

health information were protected. The orbital CT data were

collected (from de-identified human subjects) from hospitals

affiliated with the College of Medicine, the Catholic University

of Korea (CMC; Seoul St. Mary's Hospital, Yeouido St.

Mary's Hospital, Daejeon St. Mary's Hospital, and St. Vincent

Hospital). The orbital CT scans were obtained from January

2016 to December 2020. The dataset contained 46 orbital

CT scans from Korean men and women ranging in age from

20 years to 60 years. The runtime environment (RTE) is

summarized in Supplementary Table 1.

1. Masking the eyeball, optic nerve, and
extraocular muscles on the orbital CT scans

1. Run the masking software program.
 

NOTE: The masking software program (MediLabel, see

the Table of Materials) is a medical image labeling

software program for segmentation, which requires few

clicks and has high speed.

2. Load the orbital CT by clicking on the open file icon

and selecting the target CT file. Then, the CT scans are

shown on the screen.

3. Mask the eyeball, optic nerve, and extraocular muscles

using super pixels.

1. Run the SmartPencil by clicking on the SmartPencil

wizard in MediLabel (Video 1).

2. Control the resolution of the super pixel map if

necessary (e.g., 100, 500, 1,000, and 2,000 super

pixels).

3. Click on the cluster of super pixels of the eyeball,

optic nerve, and extraocular muscles on the super

pixel map, where pixels of similar image intensity

values are clustered.

4. Refine the masks with the autocorrection functions in

MediLabel.

1. Click on the SmartFill wizard after masking some of

the super pixels on the slices (Video 2).

2. Click on the AutoCorrection icon, and ensure that

the corrected mask labels are computed (Video 3).

5. Repeat step 1.3 and step 1.4 until the refinement of the

masking is complete.

6. Save the masked images.

2. Pre-processing: Window clipping and cropping
the VOIs

1. Extract the VOIs with preprocessing_multilabel.py (the

file is downloadable from GitHub).

1. Run preprocessing_multilabel.py.

2. Check the scans and masks, which are cropped and

saved in the VOIs folder.

2. Transform the VOIs to the set of three sequential

CT slices for the input to SEQ-UNET with

builder_multilabel.py (the file is downloadable from

GitHub).

1. Run sequence_builder_multilabel.py.
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2. Ensure that the slices and masks are resized to 64

pixels by 64 pixels during the transformation.

3. During the transformation, perform clipping with the

48 HU clipping level and the 400 HU window.

4. Check the saved transformed CT scans (nii file) and

masks (nii file) in the scan folder and the mask folder

under pre-processed folders, respectively.

3. Four cross-validations of the orbital
segmentation model

1. Build the model following the steps below.

1. Run main.py.

2. When running main.py, give the fold number of the

four cross-validations by "-fold num x", where x is 0,

1, 2, or 3.

3. When running main.py, use the epoch, which is the

number of training iterations, as an option, such as "-

epoch x", where x is the epoch number. The default

number is 500.

4. When running main.py, set the batch size, which is

the number of training samples in a single training

session. The default number is 32.

5. In main.py, load the CT scans and masks,

and initialize the SEQ-UNET with the pre-

trained parameters using the LIDC-IDRI dataset

(downloadable from the cancer imaging archive).

6. In main.py, perform the testing of the model after

training. Calculate the evaluation metrics, dice

score, and volume similarity, and save them in the

metrics folder.

7. Check the results in the segmented folder.

Representative Results

For the quantitative evaluation, two evaluation metrics were

adopted, which were used in the CT image segmentation

task. These were two similarity metrics, including dice score

(DICE) and volume similarity (VS)13 :

DICE (%) = 2 × TP/(2 × TP + FP + FN)
 

VS (%) = 1 − |FN − FP|/(2 × TP + FP + FN)

where TP, FP, and FN denote the true positive, false

positive, and false negative values, respectively, when the

segmentation result and the segmentation mask are given.

The performance of SEQ-UNET for orbital structure

segmentation was evaluated by four cross-validations. The

results are shown in Table 1. The eyeball segmentation

using SEQ-UNET achieved a dice score of 0.86 and a

VS of 0.83. The segmentation of the extraocular muscles

and optic nerve achieved low dice scores (0.54 and 0.34,

respectively). The dice score of the eyeball segmentation

was over 80% because it had a large portion of the

VOIs and little heterogeneity between CT scans. The dice

scores of the extraocular muscles and optic nerve were

relatively low because they infrequently appeared in the

CT volume and were found in a relatively small number

of the CT slices. However, the visual similarity scores of

the extraocular muscles and optic nerve (0.65 and 0.80,

respectively) were higher than their dice scores. This result

indicates that the specificity of segmentation was low. Overall,

the dice score and visual similarity of SEQ-UNET for the

segmentation of all the orbital substructures were 0.79 and

0.82, respectively. Examples of the visual results of orbital

structure segmentation are shown in Figure 3. In Figure

3A-C, blue is the predicted segmentation result, and red is

the ground truth mask. In Figure 3D, red, green, and orange
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are the eyeball, optic muscle, and nerve segmentation,

respectively.

 

Figure 1: Semi-automatic masking features. Masking the eyeball, extraocular muscles, and optic nerve on orbital CT

scans using (A) SmartPencil, (B) SmartFill, and (C) AutoCorrection. The mask of the eyeball is labeled by SmartPencil,

which computes the super pixels of the slices, and the mask is made by clicking on the super pixels. After clicking some of

the eyeball super pixels, the entire eyeball mask can be computed by SmartFill. In the case of masking the optic nerve, the

masking refinement is made by AutoCorrection. Blue color labeled eyeballs are shown in (A) and (B). Please click here to

view a larger version of this figure.

 

Figure 2: SEQ U-Net architecture. Sequential 2D slices as input and output; two bi-directional C-LSTMs are applied to the

end of the encoding and decoding blocks based on the U-Net architecture. Please click here to view a larger version of this

figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/64500/64500fig01large.jpg
https://www.jove.com/files/ftp_upload/64500/64500fig01large.jpg
https://www.jove.com/files/ftp_upload/64500/64500fig02large.jpg
https://www.jove.com/files/ftp_upload/64500/64500fig02large.jpg


Copyright © 2022  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com November 2022 • 189 •  e64500 • Page 6 of 9

 

Figure 3: Segmentation results of the orbital structures. (A) Eyeball (label 1), (B) optic muscle (label 2), (C) optic nerve

(label 3), and (D) multi-label (labels 1, 2, and 3). The left image is the VOI of the orbit, the center image is the predicted

segmentation, and the right image is the ground truth. In (A), (B), and (C), blue is the predicted segmentation result, and red

is the ground truth mask. In (D), red, green, and orange are the eyeball, extraocular muscle, and optic nerve segmentation,

respectively. The predicted segmentation showed high performance (DICE: 0.86 vs. 0.82) in the case of the eyeball but low

performance in the case of theextraocular muscle (DICE: 0.54 vs. 0.65) and optic nerve(DICE: 0.34 vs. 0.8). Please click

here to view a larger version of this figure.

Multi-Label Label 1 (Eyeball) Label 2 (Extraocular

muscle)

Label 3 (Optic nerve)

DICE VS DICE VS DICE VS DICE VS

SEQ-UNET 0.79 0.82 0.86 0.83 0.54 0.65 0.34 0.8

Table 1: Segmentation results for the dice score and visual similarity. The eyeball, which has a relatively large number

of slices, was segmented well with a DICE of 0.8, but the extraocular muscle and optic nerve, which have small numbers of

slices and line shape, were partially segmented with DICE values of 0.54 and 0.34, respectively.

Video 1: SmartPencil wizard in the masking software

program. A demonstration of annotating multiple pixels for

eyeball masking. The masking tasks are enabled with one
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click on clustered super pixels. Please click here to download

this Video.

Video 2: SmartFill wizard in the masking software

program. A demonstration of annotating multiple pixels for

eyeball masking. After selecting some pixels in the annotating

area, this function generates full segmentation masks with

similar intensities to the selected pixels. Please click here to

download this Video.

Video 3: AutoCorrection in the masking software

program. A demonstration of the automatic correction of

a masked pixel using a pre-trained convolutional neural

network algorithm. Please click here to download this Video.

Supplementary Table 1: Runtime environment (RTE) of

masking, pre-processing, and segmentation modeling.

Please click here to download this Table.

Discussion

Deep learning-based medical image analysis is widely

used for disease detection. In the ophthalmology domain,

detection and segmentation models are used in diabetic

retinopathy, glaucoma, age-related macular degeneration,

and retinopathy of prematurity. However, other rare diseases

apart from those in ophthalmology have not been studied due

to the limited access to large open public datasets for deep

learning analysis. When applying this method in situations

when no public dataset is available, the masking step, which

is a labor-intensive and time-consuming task, is unavoidable.

However, the proposed masking step (protocol section, step

1) helps to generate masking with high accuracy within a

short time. Using super pixels and neural network-based

filling, which cluster pixels that are similar in low-level image

properties, clinicians can label the masks by clicking the

groups of pixels instead of pointing out the specific pixels.

Also, the automatic correction functions help refine the mask

processes. This method's efficiency and effectiveness will

help generate more masked images in medical research.

Among the many possibilities in pre-processing, extracting

VOIs and window clipping are effective methods. Here,

extracting VOIs and window clipping are introduced in step

2 of the protocol. When the clinicians prepare the dataset,

extracting the VOI from the given dataset is the most

important step in the process because most segmentation

cases focus on small and specific regions in the whole

medical image. Regarding the VOIs, the regions of the

eyeball, optic nerve, and extraocular muscles are cropped

based on the location, but more effective methods for

extracting VOIs have the potential to improve segmentation

performance14 .

For the segmentation, SEQ-UNET is employed in the study.

The 3D medical images have large volumes, so deep neural

network models require large memory capacities. In SEQ-

UNET, the segmentation model is implemented with a small

number of slices to reduce the required memory size without

losing the features of the 3D information.

The model was trained with 46 VOIs, which is not a large

number for model training. Due to the small number of training

datasets, the performance of optic nerve and extraocular

muscle segmentation is limited. Transfer learning15  and

domain adaptation8  could provide a solution for improving the

segmentation performance.

The whole segmentation process introduced here is not

limited to orbital CT segmentation. The efficient labeling

method helps create a new medical image dataset for when
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the application domain is unique to the research area. The

python codes of GitHub concerning the pre-processing and

segmentation modeling can be applied to other domains with

the modification of the cropping region, the window clipping

level, and the model hyper-parameters, such as the number

of sequential slices, the U-Net architectures, and so on.
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