Summary

分离,培养和移植肌卫星细胞

Published: April 08, 2014
doi:
Please note that all translations are automatically generated. Click here for the English version.

Summary

静止卫星细胞的纯群体的分离和培养,肌肉干细胞群,是必不可少的肌肉干细胞生物学和再生,以及干细胞移植在肌营养不良症和其他退行性疾病的治疗方法的理解。

Abstract

肌卫星细胞是必需的产后骨骼肌发育和再生干细胞群,占sublaminal核2-5%的肌纤维。在成人的肌肉,卫星细胞通常有丝分裂的静态。以下损伤,然而,卫星细胞引发细胞增殖以产生成肌细胞,它们的子代,介导肌肉的再生。的卫星细胞衍生的成肌细胞移植已被广泛研究作为一种可能的治疗为几个再生的疾病,包括肌营养不良,心脏衰竭,和泌尿功能障碍。成肌细胞移植到营养不良骨骼肌,心肌梗死心脏和正常运作尿导管表明,嫁接成肌细胞能分化成肌纤维在宿主组织并在这些疾病中显示的部分功能改善。因此,从骨骼MUSCL静止卫星细胞的有效的纯化方法的开发E,以及建立卫星细胞来源的成肌细胞的培养和移植方法,成肌细胞,对于理解后面卫星细胞的自我更新,活化和分化的分子机制是必不可少的。此外,基于细胞的疗法的肌肉萎缩症和其它再生疾病的发展,也取决于这些因素。

然而,静态卫星细胞的当前预期的纯化方法需要使用昂贵的荧光激活细胞分选术(FACS)的机器。在这里,我们提出了一种新的方法从成年小鼠骨骼肌通过酶解静止卫星细胞的快速,经济,可靠的净化后的磁激活细胞分选(MACS)。继纯静态的卫星细胞的分离,这些细胞可以培养几个段落后获得大量的成肌细胞。这些新鲜分离静止卫星细胞或活体外扩增的成肌细胞可移植到心脏毒素(CTX)诱导再生小鼠骨骼肌检查,以再生肌纤维供体来源的细胞的贡献,以及对卫星细胞车厢自我更新的检查活动。

Introduction

肌卫星细胞是一小口位于骨骼肌纤维基底层下方生肌干细胞。它们的特点是表达Pax7,PAX3,c-Met的M-钙粘蛋白,CD34,配体蛋白聚糖-3的表达,和降钙素是1 – 3。卫星细胞已被证明是负责肌肉再生肌肉干细胞。在成人的肌肉,卫星细胞通常有丝分裂的静态4-8。损伤后,卫星细胞被激活,启动MyoD的表达,并进入细胞周期,以扩大他们的后代,称为肌前体细胞或成肌细胞3。经过几轮细胞分裂,成肌细胞退出细胞周期和保险丝彼此以进行分化成多成核肌管,随后成熟的肌纤维。成肌细胞从成年肌肉中分离可容易地体外扩增。成为肌纤维的再生和肌肉的能力,成肌细胞在非肌肉组织形式异位肌纤维是由成肌细胞移植,为杜氏肌营养不良症(DMD)4一个潜在的治疗方法,泌尿功能障碍9,和心脏衰竭10利用。事实上,成肌细胞已经成功移植在这两个MDX(DMD模型)小鼠和DMD患者11-14的肌肉。注入的正常成肌细胞与宿主肌纤维融合,以改善病变肌肉的组织学和功能。以前的工作表明,成肌细胞的亚群更干细胞样和在肌肉再生5保持在未分化状态在较长的肌肉。最近的工作表明,从成年肌肉新鲜分离的卫星细胞含有干细胞样群体表现出更有效的植入和自我更新的活动在再生肌肉5-8。因此,从成年骨骼肌亩静止卫星细胞的纯人口的纯化SCLE是必不可少的理解卫星细胞,成肌细胞和肌再生的生物,和基于细胞的疗法的发展。

然而,静态卫星细胞的当前预期的纯化方法需要使用昂贵的荧光激活细胞分选术(FACS)机1,2,6-8的。此外,流式细胞仪激光曝光通常的分离,这将导致静态卫星细胞15的下屈服过程中诱导细胞死亡。在这里,我们提出了从成年小鼠骨骼肌静止卫星细胞的快速,经济,可靠提纯的新方法。此方法利用酶解随后磁激活细胞分选(MACS)。继纯静态的卫星细胞的分离,这些细胞可以培养几个段落后获得大量的成肌细胞。我们还表明,这些注入新鲜分离的静止卫星细胞或前六肌内画外音扩展的成肌细胞可移植到心脏毒素(CTX)诱导再生小鼠骨骼肌检查供体来源的细胞的再生肌纤维,以及对卫星细胞区室为自我更新的活动的检查的贡献。

Protocol

动物被容纳在一个SPF环境和由研究动物资源明尼苏达大学(RAR)进行了监测。该动物以适当的方式安乐死(CO 2吸入或氯化钾注射液被麻醉的IP注射圣阿韦坦(250毫克/公斤)后,所有协议获得批准的机构动物护理和使用委员会(IACUC,码数:1304-30492明尼苏达大学的)。 1,从分离小鼠骨骼肌单个核细胞适当牺牲1或2年轻的成年小鼠(3-8周)。 捏和狭缝与锋利的剪刀腹部的皮肤。剥落的皮肤完全展现三头肌和后肢肌肉(拉在相反方向的皮肤)。 删除所有腿部骨骼肌肉(胫前肌,腓肠肌,股四头肌)和三头肌沿着骨头用剪刀。然后在10cm平板转移至肌肉冰冷的无菌PBS中。 1-2小鼠1盘:洗血脱在PBS肌肉和肌肉转移到一个新的无菌6厘米板。 解剖显微镜下去除结缔组织,血管,神经束和成脂组织。 用剪刀用于眼科,切割和切碎的组织成光滑的纸浆( 图1A和1B)。尽量不留下大的碎片,因为它们将不容易被酶溶液进行细分。 转移剁碎肌肉成猎鹰50ml管中,并加入5 ml的胶原酶溶液(0.2%胶原酶类型的DMEM 2在10%FBS)。在37℃下60分钟。 磨碎(向上和向下与18号针头),以均匀的混合物( 图1C)。然后进一步在37℃孵育混合物15分钟。 再次磨碎,以均质混合物中解离成单细胞悬液。添加的DMEM 2%FBS的最多至50ml成单细胞悬浮液并混合好。 放置一个细胞过滤网(70微米)至Falcon 50ml管中( 图1D)。传送含有脱落的细胞到细胞过滤上清液,吸取细胞悬液向上和向下的过滤器,直到它穿过。 通过血球计数细胞数。离心管在2,000 rpm在4℃下5分钟;吸,弃上清。 重悬在DMEM10毫升2%FBS。离心管在2,000 rpm在4℃下5分钟;吸,弃上清。 重悬于200微升2%胎牛血清的DMEM和转移的细胞悬液注入的1.5 ml离心管中。通常情况下,约2×10 6个细胞应从1小鼠的肌肉被收获。细胞将稀释至1×10 6个细胞在DMEM中加入100μl2%FBS的浓度。 2,抗体染色分离 – MACS 在接下来的公关ocedures,用无菌缓冲液保持无菌条件。加入抗体的每个卷和细胞悬浮介质是计算从1小鼠全肌肉细胞。如果细胞是从2个或更多的小鼠收获,试剂的量应被优化。 添加每个CD31-PE,CD45-PE,的Sca-1-PE和整合素α7抗体为200微升的细胞悬浮液的1微升。在冰上孵育30分钟。 洗涤细胞:温育后,加入DMEM1毫升2%FBS到细胞悬浮在1.5mL管中,并离心分离机在2000rpm下在4℃下3分钟。重复此步骤两次。 吸,弃上清。 悬浮细胞用200微升2%FBS的DMEM培养基中,并加入10微升的抗PE磁珠。在冰上孵育30分钟。 洗涤细胞:温育后,加入1 ml的MACS缓冲液,以细胞悬浮液中的1.5 ml离心管,然后离心以2,000 rpm在4℃下3分钟。重复此步骤,总重量冰。请注意,电池应通过MACS缓冲液由磁性柱被分离之前洗涤。 吸,弃上清。重悬细胞用1.0毫升的MACS缓冲液中。 成立LD柱在磁板上,并冲洗色谱柱2.0毫升MACS缓冲液( 图1E)。 细胞悬液转移到LD柱,并收集流过级分至1.5 ml管中。该馏分含有PE-阴性细胞。 离心机以2,000 rpm在4℃下进行3分钟,吸出并弃去上清液。 悬浮细胞用200μl2%FBS的DMEM中,并加入10微升的抗小鼠IgG磁珠。在冰上孵育30分钟。 洗涤细胞:温育后,加入1 ml的MACS缓冲液进入细胞悬浮在1.5ml管中,然后离心以2,000 rpm在4℃下3分钟。吸,弃上清。重复此步骤两次。重悬细胞用500μlMACS缓冲液。 设置MS柱在磁板上,并冲洗色谱柱用500μlMACS缓冲液( 图1F)。 转移细胞悬浮液涂布到MS柱,并弃去流过级分(整合素α7-阴性细胞)。 冲洗用1毫升MACS缓冲液,然后重复此步骤两次。 漂洗后,从分离器的磁场删除的列。申请1.0毫升的MACS缓冲液上柱,并通过从塔的顶部推压注射器柱塞洗脱磁性标记的细胞(整合素α7-阳性细胞)至1.5 ml微量离心管中。收集流过到1.5ml的试管中。重复洗脱用1.5ml的MACS缓冲液和收集流过。 离心机以2,000 rpm在4℃下进行3分钟,吸出并弃去上清液。 悬浮纯化的细胞用1ml的成肌细胞培养基(20%FBS的含火腿的F-10与bFGF)的,并且板单元上的Matrigel包被的10厘米板用8ml成肌细胞中的(5毫升6厘米板)( 图1G)。需要注意的是1-2×10 5细胞可以潜在地从1完整小鼠肌肉中分离。 3。维护与成肌细胞培养基喂养细胞每隔一天。越来越多的成肌细胞的外观是一个小而圆的形状在其核MyoD的表达( 图2),并表达Pax7(数据未显示)。 成肌细胞应该50%汇合之前启动细胞融合时进行传代或。用PBS漂洗一次后,培养细胞用0.25%胰蛋白酶溶液,在37℃下在CO 2培养箱中3分钟,并收集分离的细胞,成肌细胞培养基中。离心细胞(1,000 rpm离心5分钟)后,暂停与成肌细胞介质和replate细胞到新的基质胶包被的平板上。胶原包被的板可以通道3后使用。一板通常可以分成三到五个板块。 4。迪菲rentiation REFEED与分化中的每一天。 通过在分化培养基2天,成肌细胞退出细胞周期和进行分化成肌球蛋白重链(MHC)阳性细胞。这些myoctyes开始细胞融合与对方产生多核肌管。通常情况下,大部分的成肌细胞成为MHC-阳性差分单核细胞或肌管( 图2)通过在分化培养基3-5天。 5,成肌细胞移植到小鼠的骨骼肌再生腹腔(IP)注射麻醉小鼠与圣阿韦坦(250毫克/千克)。 剃了头发皮肤上绕胫前(TA)的肌肉。成肌细胞移植二十四小时前,10微米CTX(50微升)肌内注射到NOD / SCID小鼠的TA肌肉通过一个31 G胰岛素注射器通过剃光皮肤( 图诱发肌肉再生60,3)。 增殖的成肌细胞解离,用0.25%胰蛋白酶溶液中,以1,000 rpm离心5分钟。吸,弃上清。重悬1×10 6个细胞与50μl的DMEM 2%FBS的。转移悬浮细胞成一个31 G的胰岛素注射器。 受体小鼠将通过IP注射进行麻醉,用阿佛丁(250毫克/千克),以及1×10 6个成肌细胞( 图2)肌内注射到再生的TA肌肉。 收获的TA肌肉由1-4周细胞注射用于组织学分析( 图3)之后。

Representative Results

新鲜分离的静止卫星细胞显示一个小的,圆形( 图1G),并且明确表达Pax7作为一个明确的标志静止卫星细胞。超过90%的新鲜分离细胞的表达表达Pax7( 图1H和1I)。污染最严重的细胞是由血细胞体外成肌以下培养条件不高效发展。因此,卫星细胞来源的成肌细胞中占主导地位的文化。任选地,可以重复该步骤为MS柱纯化(步骤2.11-2.14),以增加分离的?…

Discussion

在这个协议中,静态卫星细胞可以容易地从小鼠通过胶原酶消化和表面抗体介导的MACS分离成年骨骼肌纯化。这种方法大约需要6小时,不需要任何昂贵的设备,如流式细胞仪机。此外,相比表面抗体介导的FACS分离这种方法是相对便宜的。较高的收益率静态卫星细胞也有望在比较FACS这个方法,因为流式细胞仪激光曝光趋于分离15时诱导细胞死亡。其他的隔离方法,例如预镀或单个肌纤维的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Shahragim Tajbakhsh博士提供MYF5 + / nLacZ小鼠。我们也感谢亚历山大HRON和迈克尔Baumrucker这个手稿的批判性阅读。这项工作是由肌肉萎缩症协会(MDA)和格雷戈里Marzolf小的MD中心奖助学金支持。

Materials

Materials
Collagenase Type 2 Worthington CLS-2 100 mg
Marigel BD Biosciences 356234 5 ml
DMEM Gibco-Invitrogen 10569010 500 ml
Collagen (Rat Tail) BD Biosciences 354236 100 mg (3-4 mg/ml)
Acetic Acid Sigma-Aldrich 320099-500ML 500 ml
bFGF, human, Recombinant Gibco-Invitrogen PHG0263 1 mg
Bovine Serum Albumin (BSA) Sigma-Aldrich A5611-1G 1 g
Ham’s F10 Medium Gibco-Invitrogen 11550-043 500 ml
Fetal Bovine Serum (FBS) Fisher Scientific 3600511 500 ml
Horse Serum Gibco-Invitrogen 26050088 500 ml
Penicillin/Streptmycin Gibco-Invitrogen 15640055 100 ml
Phosphate Buffered Saline Gibco-Invitrogen 14190144 500 ml
0.25% Trypsin/EDTA Gibco-Invitrogen 25200072 500 ml
18G needle with 12cc Syringe Fisher Scientific 22-256-563
Cell strainer (70 μm) Fisher Scientific 22-363-548
Falcon 50 ml tube BD Biosciences 352098
Falcon 15 ml tube BD Biosciences 352097
10 cm tissue culture plate BD Biosciences 353003
6 cm tissue culture plate BD Biosciences 353004
Falcon 10 ml disposable pipet BD Biosciences 357551
Anti-CD31 antibody-PE eBiosciences 12-0311
Anti-CD45 antibody-PE eBiosciences 30-F11
Anti-Sca1 antibody-PE eBiosciences Dec-81
Anti-Integrin α7 antibody MBL International ABIN487462
Anti-PE MicroBeads Miltenyi Biotec 130-048-801
Anti-Mouse IgG MicroBeads Miltenyi Biotec 130-048-402
Mini & MidiMACS Starting Kit Miltenyi Biotec 130-091-632
MS Column Miltenyi Biotec 130-042-201
LD Column Miltenyi Biotec 130-042-901
Cardiotoxin Sigma Aldrich C9759-1MG Stock 10 μM in PBS
31G Insulin syringe BD Biosciences 328438
Refrigerated Microcentrifuge (Microfuge 22R) Beckman Coulter 368826
S241.5 Swinging Bucket Rotor Beckman Coulter 368882
Refrigerated Centrifuge (Allegra X-22R) Beckman Coulter 392187
Nod/Scid immunodeficient mice Charles River Laboratories Strain Code 394 Use 2 months old mice
Reagents
Name of the reagent Recipie
10% and 2% FBS DMEM DMEM (Gibco-Invitrogen #10569010) with 10% or 2% FBS (Fisher Scientific #03600511) and 1% Penicillin/Streptomycin (Gibco-Invitrogen #15640055).
0.2% Collagenase solution Collagenase Type 2 (Worthington, #CLS-2), Stock: 50 ml: 100 mg Collagenase Type 2 in 10% FBS DMEM.
10% Matrigel solution Matrigel (BD Biosciences: #356234) is placed on ice for thawing overnight. Five ml Matrigel is dilute by 45 ml DMEM and 5 ml aliquots are stored at -20°C until use.
Matrigel-coated plate Five ml of 10% Matrigel solution is placed on ice for thawing and is used for coating 10 cm plate at room temprature for 1 minutes. The plate is placed in 5% CO2 incubator at 37°C for 30 minute after removing Matrigel solution, and let the plate dry in culture hood for another 30 minutes. Removed 10% Matrigel solution is stored at -20°C for reusing.
0.01% Collagen solution Mix to final: 0.01% Collagen (Collagen, Rat Tail: BD Biosciences #354236) in 0.2% acetic acid (320099-500ML) in ddH2O.
Collagen-coated plate Add 5 ml or 2 ml of Collagen solution to a 10 cm or 6 cm tissue culture plate and let sit at room temperature for three hours. Then, aspirate off liquid and allow to dry in culture hood for 30 min to overnight. Plates can be stored at room temperature for several months.
bFGF stock solution bFGF, Human, Recombinant (Gibco-Invitrogen #PHG0263, 1 mg) is dissolved with 0.1% BSA solution consisting of 1 mg BSA (Sigma-Aldrich #A5611-1G) and 2 ml ddH2O (0.5 mg/ml bFGF). Aliquot 20 μl in 500 μl microcentrifuge tubes and kept in -80°C.
Myoblast medium 500 mL HAM’S F10 Medium (Gibco-Invitrogen #11550-043) supplemented with 20% FBS (Fisher Scientific #03600511), Penicillin/streptomycin (Gibco-Invitrogen #15640055), and 10 μg of bFGF (20 μl of bFGF stock).
Differentiation medium 500 mL DMEM (Gibco-Invitrogen #10569010) supplemented with 5% Horse serum (Gibco-Invitrogen #26050088) and 1% Penicillin/streptomycin (Gibco-Invitrogen #15640055).
10 μM Cardiotoxin stock 1 mg Cardiotoxin (EMD Millipore #217504-1MG) is dissolved with 13.9 ml PBS.

References

  1. Fukada, S., et al. Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp. Cell Res. 296, 245-255 (2004).
  2. Hirai, H., Verma, M., Watanabe, S. C. T., Asakura, Y., Asakura, A. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol. (191), 347-365 (2010).
  3. Asakura, A. Stem cells in adult skeletal muscle. Trends Cardiovasc. Med. 13, 123-128 (2003).
  4. Partridge, T. A. Cells that participate in regeneration of skeletal muscle. Gene Ther. 9, 752-753 (2002).
  5. Collins, C. A., et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 122, 289-301 (2005).
  6. Montarras, D., et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 309, 2064-2067 (2005).
  7. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 456, 502-506 (2008).
  8. Conboy, M. J., Cerletti, M., Wagers, A. J., Conboy, I. M. Immuno-analysis and FACS sorting of adult muscle fiber-associated stem/precursor cells. Methods Mol. Biol. 621, 165-173 (2010).
  9. Yokoyama, T., Huard, J., Chancellor, M. B. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J. Urol. 18, 56-61 (2000).
  10. Menasche, P. Skeletal muscle satellite cell transplantation. Cardiovasc. Res. 58, 351-357 (2000).
  11. Huard, J., et al. Myoblast transplantation produced dystrophin-positive muscle fibres in a 16-year-old patient with Duchenne muscular dystrophy. Clin. Sci. 81, 287-288 (1991).
  12. Tremblay, J. P., et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 2, 99-112 (1993).
  13. Gussoni, E., Blau, H. M., Kunkel, L. M. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat. Med. 3, 970-977 (1997).
  14. Palmieri, B., Tremblay, J. P., Daniele, L. Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatr. Transplant. 14, 813-819 (2010).
  15. Mollet, M., Godoy-Silva, R., Berdugo, C., Chalmers, J. J. Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol. Bioeng. 98, 772-788 (2007).
  16. Asakura, A., Rudnicki, M. A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 30, 1339-1345 (2002).
  17. Asakura, A., et al. Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 104, 16552-16557 (2007).
  18. Gerard, X., et al. Real-time monitoring of cell transplantation in mouse dystrophic muscles by a secreted alkaline phosphatase reporter gene. Gene Ther. 16, 815-819 .
  19. Tajbakhsh, S., Rocancourt, D., Cossu, G., Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis Pax-3 and Myf-5 act upstream of MyoD. Cell. 89, 127-138 (1997).
  20. Beauchamp, J. R., et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 1221-1134 (2000).
  21. Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A., Rudnicki, M. A. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J. Cell Biol. 144, 631-643 (1999).
  22. Bischoff, R. Regeneration of single skeletal muscle fibers in vitro. Anat. Rec. 182, 215-235 (1975).
  23. Asakura, A., Seale, P., Girgis-Gabardo, A., Rudnicki, M. A. Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 159, 123-134 (2002).
  24. Kuang, S., Kuroda, K., Le Grand, F., Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 129, 999-1010 (2007).
  25. Cerletti, M., et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 134, 37-47 (2008).
  26. Farina, N. H., et al. A role for RNA post-transcriptional regulation in satellite cell activation. Skelet. Muscle. 2, 21-21 (2012).
  27. Tanaka, K. K., Hall, J. K., Troy, A. A., Cornelison, D. D., Majka, S. M., Olwin, B. B. Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell. 4, 217-225 (2009).
  28. Pallafacchina, G., et al. An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res. 4, 77-91 (2009).

Play Video

Cite This Article
Motohashi, N., Asakura, Y., Asakura, A. Isolation, Culture, and Transplantation of Muscle Satellite Cells. J. Vis. Exp. (86), e50846, doi:10.3791/50846 (2014).

View Video