资料来源: 实验室的尼古拉 Noles、 朱迪思 · Danovitch 和 Asheley 兰卓姆 — — 路易斯维尔大学
孩子们有很多的工具,他们使用在发展过程中,以从成人学习。最早的工具也许就是模仿,只复制什么他们看到成人做或说。然而,孩子们其实比我们想象如果他们只模仿更有效地学习。这是因为,学习和教学的时候,儿童和成人有特殊关系。儿童成人一样对待他们是有益的和知识渊博的老师,和成人教儿童信息通常是高效和有效的方式。通过这些交互,孩子可以学习比如果他们只是使用试验和错误,或完全复制成人好得多。这种相互作用的方式称为自然教育学,和它是年轻的人类是有天赋的学习者的原因之一。
最令人印象深刻的自然教育学方面之一就是没有人如何成为好教师,教成人和儿童治疗成人作为教师没有被训练来这样做。然而,自然教育学也需要成本。孩子们好奇和内在的动力去探索,所以孩子们做一些他们最好到机会时学习学习和探索自己。因此,自然教育学的结果是孩子们学习信息教给他们非常有效,但却明确教学制约着他们好奇、 探索性的行为。有是有效的学习和自我激励的探索之间的折衷。
该视频演示了伊丽莎白 •、 帕特里克 · Shafto 和同事1表明自然教育学的影响: 对年轻的学习者的方法。
招聘大约 40 健康 4 岁无病史的发育障碍。为了在该例中,只有两个孩子都是测试 (每个条件中的一个)。更大的样本量被建议时进行任何实验。
1.数据收集
2.分析
儿童学习,形成了特殊的教学关系与成人的过程中超越简单的模仿和反复使用。
例如,一个孩子可能学会系鞋带使用试验和错误,但它是更有效的成人教他们的有效方法之一。
没有经过训练,这样做,孩子成人一样对待他们是有益的和知识渊博的老师,和成人教儿童信息通常是高效和有效的方式。这种固有的教学和学习交换称为自然教育学。
然而,如果教学语境包括学习的主导方法,这可能会限制孩子的好奇心和独立的动机,学习靠自己,没有额外的指示。那就是,因为老师没有显示他们别的在操场上,孩子就可能认为是不需要进一步的学习。
基于由伊丽莎白 •,帕特里克 Shafto 和同事们开发的方法,该视频演示了一个简单的方法,如何设计和进行实验调查的年幼的孩子,自然教育学的影响,以及如何分析和解释的好处和限制的教学结果。
在这个实验中,4 岁儿童被放入两个集团之一,在那里他们被要求玩玩具具有四个不同的隐藏功能 — — 包括它按时闪烁的 bug。
对于基准条件,每个孩子显示玩具没有任何隐藏的功能表现,这被认为是自主探索测试。
与此相反的是,在教学条件下,儿童显示玩具,伴随着示范如何一的它的职能工作,例如使它吱吱叫。
在这种情况下,因变量是在玩具发现的隐函数的数目。
儿童教育状况预计将发现少比在基准条件下,儿童玩具的隐藏功能,因为他们将有可能从事与设备更具针对性和有限的方式比孩子的了解上他们自己的设备。
在实验开始之前,构建一种新型装置将参与孩子的注意力,如一个隐藏的按钮,使轻加油,玩具,按时, 闪烁的 bug 的四种不同和非明显功能与龟藏在管。
这个孩子的时候,第一次坐在一个安静的空间。
把他们随机分配到两个条件之一: 在基准条件下,玩具给孩子,只是看看它。在教学条件下,证明如何一个功能的玩具作品,如使它吱吱叫。
在测试期内,使用一台摄像机记录孩子的交互。一旦开始录音,给每个孩子的玩具,让他们看看是否他们可以找出它是如何工作。离开他们独自去玩,并让他们表明他们时完成。
当孩子停止玩玩具,为期 5-s 结尾的实验。
一旦完成了这项研究,指派两个独立的程序员是视而不见的条件查看所有视频和隐藏的功能,发现了由每个孩子进行计数。为了得分,演示中使用的玩具不是隐藏的功能。
每个孩子可能会收到一个分数之间 0 — — 发现不起作用 — — 和 3 — — 发现的所有功能。
要分析的数据,请执行的 t-检验来确定在发现函数条件之间的数目是否存在任何差异。
请注意,在教学条件下,孩子被教导有关设备,主要侧重于对他们来说,所示的函数相比,在基准条件的儿童。这一发现表明,教孩子们他们的注意力集中于传达信息和意味深长地限制了他们的探索和好奇心。
既然你已经熟悉设计心理学实验,观察自然教学法在儿童中的,让我们考虑如何的调查结果表明情况时教师应该教或允许孩子自己探索之间微妙的平衡。
参与自主的探究和自由发挥,孩子接触到广泛的教育机会,包括如何解决问题,甚至了解科学过程 — — 喜欢的蜕变。
然而,在更广泛的学习中,勘探效率低下或甚至有问题,减慢学习存在情况。例如,只有几种方法来做长除法和它是一个小孩要学会从一个老师比发现一个人对自己的一种方法更容易。
你刚看了朱庇特的成本和效益的自然教育学概论。现在你应该有好的理解如何设计和开展实验,以及最后如何分析和解释结果。
谢谢观赏 !
在教学条件下的儿童通常发现较少比儿童在基线条件 (图 1) 设备的隐藏功能。儿童通常还教有关设备少花时间玩玩,和他们专注于他们的游戏功能教给他们的实验者,即使他们发现其他的功能。两者合计,这些研究结果表明,教孩子们他们的注意力集中于传达信息和意味深长地限制了他们的探索和好奇心。他们从事与设备更具针对性和有限的方式比孩子的了解上他们自己的设备。
图 1。玩具函数的孩子发现跨条件的平均数目。
这个实验表明,让儿童的价值探讨他们的世界他们自己,并显式地教孩子们可以有意义地限制他们的好奇心,在某些情况下。尤其是越来越多的证据表明,孩子们可以学习作为有效,如果不是更有效地通过自由发挥和自主的探究比通过显式指令。也就是说,教学并不是总是一件坏事,这些结果必须在孩子们的学习更广泛范围内审议。有时是有益的探索和发现事情自己,一个人,但也有很多情况下,在这种探索是低效或甚至有问题。例如,有很多情况下,在这种探索只能减慢学习,学习如何系鞋带或执行长除法等。这些结果显示,教师必须仔细考虑何时教以及何时允许儿童天生的好奇心,来指导他们的学习。
Children go beyond the use of simple imitation and trial and error during the course of learning to form a special pedagogical relationship with adults.
For instance, a child might learn to tie their shoes using trial and error, but it’s much more efficient for an adult to teach them one effective method.
Without being trained to do so, children treat adults as if they are helpful and knowledgeable teachers, and adults teach children information in a manner that is usually efficient and effective. This inherent exchange of teaching and learning is called natural pedagogy.
However, if pedagogical contexts encompass the dominant approach for learning, this could limit a child’s curiosity and independent motivation to learn on their own, without additional instruction. That is, since the teacher did not show them anything else on the playground, the child may assume that there is nothing further to learn.
Based on methods developed by Elizabeth Bonawitz, Patrick Shafto, and colleagues, this video demonstrates a simple approach for how to design and conduct an experiment investigating the effects of natural pedagogy in young children, as well as how to analyze and interpret results on the benefits and limits of teaching.
In this experiment, 4-year old children are placed into one of two groups, where they are asked to play with a toy with four different hidden functions—including a bug that flashes when it’s pressed.
For the baseline condition, each child is shown the toy without any of the hidden functions demonstrated, which is considered a test of self-directed exploration.
In contrast, in the pedagogical condition, children are shown the toy, accompanied by a demonstration of how one of the its functions works, such as making it squeak.
In this case, the dependent variable is the number of hidden functions that are discovered on the toy.
Children in the pedagogical condition are predicted to discover fewer of the hidden functions on the toy than children in the baseline condition, as they will likely engage with the device in a more focused and limited way than children who learn about the device on their own.
Before the experiment begins, construct a novel device with four different and non-obvious functions that will engage a child’s attention, such as a hidden button that makes a light come on, a squeaker, a bug that flashes when pressed, and a turtle hidden in a pipe.
When the child arrives, first sit them in a quiet space.
Randomly assign them to one of two conditions: in the baseline condition, show the toy to the child and simply look at it. In the pedagogical condition, demonstrate how one function of the toy works, such as making it squeak.
During the testing session, use a video camera to record the child’s interactions. Once recording has started, give the toy to each child and ask them to see if they can figure out how it works. Leave them alone to play, and have them indicate when they are finished.
When the child stops playing with the toy for a 5-s period, end the experiment.
Once the study is finished, assign two independent coders who are blind to the conditions to view all videos and count the number of hidden functions discovered by each child. For the purpose of scoring, the squeaker used in the demonstration is not considered a hidden function.
Each child may receive a score between 0—discovered no functions—and 3—discovered all of the functions.
To analyze the data, perform a t-test to determine if any differences exist in the number of discovered functions between conditions.
Notice that children in the pedagogical condition, who were taught about the device, focused primarily on the function shown to them, compared to children in the baseline condition. This finding suggests that teaching children focuses their attention on the communicated information and meaningfully limits their exploration and curiosity.
Now that you are familiar with designing a psychology experiment to observe natural pedagogy in children, let’s consider how the findings demonstrate a delicate balance between situations when teachers should teach or allow children to explore on their own.
By engaging in self-directed exploration and free-play, children are exposed to a wide range of educational opportunities, including how to solve problems and even learn about scientific processes—like metamorphosis.
However, in the broader context of learning, situations exist where exploration is inefficient or even problematic and slows learning down. For example, there are only a few ways to perform long division, and it is much easier for a child to learn a method from a teacher than to discover one on their own.
You’ve just watched JoVE’s introduction to the costs and benefits of natural pedagogy. Now you should have a good understanding of how to design and conduct the experiment, and finally how to analyze and interpret the results.
Thanks for watching!
Related Videos
Developmental Psychology
54.2K 浏览
Developmental Psychology
10.2K 浏览
Developmental Psychology
54.4K 浏览
Developmental Psychology
15.1K 浏览
Developmental Psychology
33.0K 浏览
Developmental Psychology
13.1K 浏览
Developmental Psychology
10.5K 浏览
Developmental Psychology
15.0K 浏览
Developmental Psychology
5.3K 浏览
Developmental Psychology
5.2K 浏览
Developmental Psychology
61.5K 浏览
Developmental Psychology
5.7K 浏览
Developmental Psychology
6.3K 浏览
Developmental Psychology
14.3K 浏览
Developmental Psychology
11.0K 浏览