资料来源:郭大卫,工程、技术和航空学院(CETA),南新罕布什尔大学(SNHU),曼彻斯特,新罕布什尔州
机翼是飞机的主要升降器。在起飞或着陆期间,通过部署高提升设备(如襟翼(在后缘)和板条(在前沿),可以进一步提高翼性能。
在这个实验中,风洞被用来产生一定的气流,克拉克Y-14机翼与皮瓣和板条用于收集和计算数据,如提升,拖动和俯仰矩系数。Clark Y-14 翼翼如图 1 所示,厚度为 14%,在较低的表面从弦的 30% 到背面是平坦的。在这里,风洞测试用于演示 Clark Y-14 机翼的空气动力学性能如何受到高提升设备(如活门和板条)的影响。
图 1.克拉克Y-14翼飞机轮廓。
飞机在起飞和降落时的速度相对较低。为了产生足够的提升,必须增加机翼面积和/或改变机翼前缘和后缘上的翼形形状。为此,在前缘使用板条,在后缘使用活门。活门和板条可以移入或移出机翼。部署活门和板条有两种效果;它增加了机翼面积和机翼的有效外倾角,增加了提升。此外,襟翼和板条的部署也增加了飞机的阻力。图 2 显示了带襟翼和板条的机翼的巡航、起飞和着陆配置。
图 2.各种翼翼翼翼和板条配置。
在飞行过程中,飞机的机翼不断受到产生的空气动力学力和力矩的影响,如图3(a)所示。由此产生的力 R 可以分解为两个分量。通常,一个分量沿远流速度的”V+”方向,称为”拖动D”,另一个分量与方向垂直,称为提升L。
那一刻,M,移动飞机的鼻子向上或向下,因此,它被称为投球时刻。在风洞测试中,通常直接测量正常力和轴向力。正常力、N和轴向力A与通过攻击角度的提升和拖动相关,如图 3(b) 所示。攻击角,定义为远流速度方向与翼翼翼弦之间的角度。
图3(a))。由此产生的空气动力学力和力矩。
图3(b)所示。产生的力的分解,R。
两个力对也可以表示如下:
其中#是攻击的角度。
机翼的非维提升系数CL定义为:
其中L为提升,是基于自由流密度的动态压力,α,和空速,V,和S是机翼的参考区域。
同样,翼翼的非尺寸阻力系数定义为:
提升和拖动产生的空气动力学力位于机翼(或翼)上称为压力中心的点。然而,压力中心的位置不是固定的位置,而是根据攻击角度移动。因此,将所有力和力移至大约四分之一和弦点(距离与前缘的弦长度的 1/4)是很方便的。这被称为约四分之一和弦,M c/4的投球时刻。
图 4.约四分之一和弦的投球时刻。
俯仰矩系数,CM,c/4,约四分之一和弦定义为:
其中Mc/4是约四分之一和弦的俯仰时刻,c 是翅膀的和弦长度。
翼性能依赖于雷诺编号Re,它定义为:
其中参数=是流体的动态粘度。
在本演示中,在风洞中评估了具有简单活门和简单板条的 Clark Y-14 翼翼的性能,如图 4 所示。机翼安装在一种称为刺痛平衡的装置上,如图 5 所示,用于测量正常力N和轴向力A。
图 5.克拉克Y-14翼与皮瓣和板条。
机翼是飞机的主要升降装置,其几何形状是飞机性能的关键。首先,回想一下,提升是由顶部和底部表面之间的压差产生的空气动力学力。总提升与机翼的表面面积成正比。因此,较高的表面积会导致提升增加。
提升还受机翼横截面的几何形状影响,称为翼翼。回想一下,翼子板的弦线连接前缘和后缘。另一个称为外倾角的属性描述了两个曲面之间的不对称。大多数翅膀有正倾角,这意味着它们是凸的。与表面积一样,外倾角的增加会导致提升增加。
由于起飞和着陆期间的风速相对较慢,因此通过在机翼前缘和后缘部署设备来增加表面积和外倾角,以便产生足够的提升。位于翼子板前边缘的设备称为板条,而位于后缘的设备称为活门。板条和活门可以根据需要移入或移出机翼。
虽然板条和襟翼的部署增加了提升,但它也增加了飞机的阻力,而飞机的阻力与提升是对立的。我们可以通过计算提升系数和阻力系数(如图所示,其中 L 和 D 分别为提升和拖动)来量化这两种力。Rho无穷大和V无穷大是自由流密度和速度,而S是机翼的参考区域。
提升作为自然界中的一种分配力,可以均衡或简化为位于压力中心的单个集中力。但是,随着攻击角度的变化,此位置会向前或向前移动。因此,在讨论力时,我们指的是机翼的空气动力学中心。
机翼的空气动力学中心是投球矩系数因攻击角度不同而有效变化的位置。另一种典型的表达投球时刻的方法是使用投球矩系数。此无维系数如图所示计算,其中 M C/4 是 1/4 和弦点的俯仰矩。
在我们的演示中,我们测量1/4和弦的俯仰时刻,该时刻靠近机翼的空气动力学中心。在这个实验中,我们将研究克拉克Y-14翼翼,在不同角度的攻击上用简单的平板和板条。然后,我们将分析提升、拖动和俯仰时刻,以确定每种配置的性能特征。
对于此实验,使用空气动力学风洞,测试部分为 1 英尺乘 1 英尺,最大工作空速为 140 mph。风洞必须配备数据采集系统和刺平衡,测量正常力和轴向力。
现在,获得克拉克Y-14翼模型与附加的皮瓣和板条。从干净的翼子板配置开始测试,这意味着未部署活门或板条。现在打开测试部分,并将机翼安装在刺平衡上。
在风洞测试部分下方操作俯仰角度调节旋钮,将刺痛平衡间距调整到水平方向。使用手持式倾角计测量螺距角度并调整螺距以达到零读数。关闭测试部分,并在风洞显示屏中推合间距角度。然后,在数据采集系统上读取所有力、力矩和空速读数。
现在,将俯仰角度(也称为攻击角度)调整为零下 8°,并通过记录所有轴向力、正常力和俯仰力矩读数进行无风测量。以 2° 的增量对从负 8 到 18° 的螺距角度重复无风测量。进行所有无风测量后,将螺距角度返回至零下 8°。
现在,打开风洞,将空速提高到每小时60英里。以零下 8° 到 18° 的俯仰角度(增量为 2°)读取轴向力、正常力和俯仰力矩。使用清洁翼子板完成所有测量后,关闭风洞并打开测试部分。
调整翼子板到新的配置,与板条调整有约3/8英寸的插槽。重新运行实验的方式与清洁机翼完全相同,首先以负 8 – 18° 的螺距角度以 2° 的增量进行无风测量。然后以 60 mph 的速度收集相同的测量值。
完成这些测量后,将机翼修改为第三种配置,与弦线和未部署的板条的活门设置为 45°。然后像以前那样重新运行测量值。最后,将机翼调整为第四个配置,其中板条和活门都部署,然后重复实验。
现在,让我们来解释结果。为了分析数据,我们将首先计算每个螺距角度的非维提升系数,如图所示。罗无穷大是自由流密度,V无穷大是自由流速度,S是机翼的参考区域。所有这些值都是已知的。
提升 L 计算为两个力对的关系,其中 N 是正位力,A 是轴向力。两者都是通过刺痛平衡来衡量的。阿尔法是攻击的角度,也称为音高角,在这个实验中。现在,让我们看一下提升系数与四种配置中每个配置的俯仰角度的图解。
比较清洁翼翼和板条配置曲线,我们看到两条曲线在低攻击角度上几乎重叠。然而,清洁翼提升曲线的峰值约为12°,但板条曲线继续增加。这表明板条可用于增加提升。如果我们比较清洁的翼子板和活门提升曲线,我们看到活门在整个攻击范围的角度上增加提升。如果同时部署板条和活门,则两个设备的好处相结合,最大提升率更高。
接下来,计算每个角度的拖动系数,如图所示。拖动 D 也定义为正态力和轴向力对的关系。在比较每种配置的拖动系数时,我们看到,随着应用的活门和板条,拖动会显著增加。从拖动和提升产生的空气动力学力 R 位于机翼上称为压力中心的点上。
压力中心不是固定位置,而是随着攻击角度的变化而移动。因此,计算关于 1/4 和弦点的所有力和时刻更方便。然后,使用1/4和弦的投间距矩,通过刺痛平衡测量,我们可以计算投球矩系数,如图所示。
最后,查看每个配置和间距角度的投球矩系数,我们看到,投球矩系数与应用的活门进入负系统。这意味着压力中心在部署活门时向后缘移动。
总之,我们学习了如何使用升降器来提高飞机性能。然后,我们评估了风洞中的 Clark Y-14 机翼,看看皮瓣和板条如何影响提升、拖动和俯仰时刻。
清洁翼板配置的结果如表 1 所示。图 6 – 8 显示了所有四种配置的所有三个系数与攻击角度,α。从图 6 中,活门和板条都提高了提升系数,但方式不同。比较清洁翼翼和板条提升曲线,两条曲线在低攻击角度上几乎重叠。清洁翼提升曲线在 12° 时峰值为约 0.9,但板条曲线继续上升到 1。4 在 18°。这表明板条可用于增加提升。当比较清洁的翼子板和活门提升曲线时,活门在整个攻击范围的角度增加提升。如果板条和活门同时部署,则效果是累积的,最大提升甚至更高。
在比较图 7 中每种配置的拖动系数时,当部署活门和板条时,拖动系数会显著增加。最后,如图 8 所示,在部署活门时,俯仰矩系数进入负系统。这意味着压力中心在部署活门时向后缘移动。
表 1.清洁机翼配置的实验结果。
攻击角度 (*) | 提升系数,CL | 拖动系数,CD | 俯仰矩系数,CM,c/4 |
-8 | -0.022 | 0.015 | -0.129 |
-6 | -0.029 | 0.014 | -0.059 |
-4 | 0.096 | 0.016 | -0.059 |
-2 | 0.208 | 0.011 | -0.054 |
0 | 0.353 | 0.006 | -0.065 |
2 | 0.460 | 0.004 | -0.053 |
4 | 0.548 | 0.032 | -0.051 |
6 | 0.708 | 0.015 | -0.062 |
8 | 0.789 | 0.025 | -0.061 |
10 | 0.849 | 0.031 | -0.061 |
12 | 0.873 | 0.045 | -0.056 |
14 | 0.856 | 0.058 | -0.089 |
16 | 0.803 | 0.080 | -0.125 |
18 | 0.803 | 0.092 | -0.128 |
图 6.提升系数与攻击角度,=。
图 7.拖动系数与攻击角度,=。
图8。投球矩系数与攻击角度,=。
表2.用于计算的参数。
参数 | 值 |
空气密度, * | 0.00230 slug/ft3 |
水密度, μL | 1.935 slug/ft3 |
重力加速度,g | 32.17 英尺/s2 |
粘度,m | 3.79 x 10-7磅/英尺2 |
自由流空速,V+ | 60 英里/小时 |
雷诺兹号码,再 | 1.56 x 105 |
弦长度,c | 3.5 in |
翼区, S | 35 in2 |
通过部署高提升设备(如活门和板条)可以增强提升的生成。大多数飞机都配有襟翼,所有商用运输机都有襟翼和板条。在飞机开发过程中,用襟翼和板条来描述机翼的性能至关重要。
在这次演示中,在风洞中评估了带有襟翼和板条的 Clark Y-14 机翼。收集力和力矩测量,以确定机翼的提升、拖动和俯仰力矩系数,带和不使用活门和板条部署。结果表明,当应用活门和板条时,提升系数会提高。然而,这也导致阻力和投球时刻的急剧增加。
The wing is the primary lift-generating apparatus in an airplane, and its geometry is key to its performance. First, recall that lift is an aerodynamic force that is generated by a pressure differential between the top and bottom surfaces. The total lift is proportional to the surface area of the wing. Thus, a higher surface area results in increased lift.
Lift is also affected by the geometry of the wing cross section, called an airfoil. Recall that the chord line of the airfoil connects the leading and trailing edges. Another property called the camber describes the asymmetry between the two surfaces. The majority of wings have positive camber, meaning that they are convex. As with surface area, increased camber results in increased lift.
Since wind speed is relatively slow during takeoff and landing, surface area and camber are increased by deploying devices on the wing’s leading and trailing edges in order to generate sufficient lift. The device at the leading edge of the airfoil is called a slat, while the device at the trailing edge is called a flap. Slats and flaps can move into or out of the wings as needed.
While the deployment of slats and flaps increases lift, it also increases the drag force on the aircraft, which acts in opposition to lift. We can quantify both of these forces by calculating the lift coefficient and drag coefficient as shown, where L and D are lift and drag, respectively. Rho infinity and V infinity are the free stream density and velocity, while S is the reference area of the wing.
Lift, as a distributive force in nature, can be equalized or simplified into a single concentrated force located at the center of pressure. However, as the angle of attack changes, this location moves forward or aft. So instead, we refer to the aerodynamic center of the wing when discussing forces.
The aerodynamic center of the wing is the location where the pitching moment coefficient is effectively unchanged by varied angle of attack. Another typical way to express pitching moment is to use the pitching moment coefficient. This dimensionless coefficient is calculated as shown, where M C/4 is the pitching moment about the 1/4 chord point.
In our demonstration, we measure the pitching moment at a 1/4 chord, which is close to the aerodynamic center of the wing. In this experiment, we will study a Clark Y-14 airfoil with a simple flat and slat at various angles of attack. We will then analyze lift, drag, and pitching moment to determine performance characteristics at each configuration.
For this experiment, use an aerodynamic wind tunnel with a 1 ft by 1 ft test section and a maximum operating airspeed of 140 mph. The wind tunnel must be equipped with a data acquisition system and a sting balance, which measures both normal and axial forces.
Now, obtain a Clark Y-14 wing model with an attached flap and slat. Begin the test with the clean wing configuration, meaning that neither the flap nor slat are deployed. Now open the test section, and install the wing on the sting balance.
Operate the pitch angle adjustment knob underneath the test section of the wind tunnel to adjust the sting balance pitch to horizontal. Use a handheld inclinometer to measure the pitch angle and adjust the pitch to reach a reading of zero. Close the test section and tare the pitch angle in the wind tunnel display. Then, tare all force, moment, and airspeed readings on the data acquisition system.
Now, adjust the pitch angle, also called the angle of attack, to minus 8°, and make a no-wind measurement by recording all axial force, normal force, and pitching moment readings. Repeat the no-wind measurements for pitch angles ranging from minus 8 to 18° with 2° increments. When all of the no-wind measurements have been made, return the pitch angle to minus 8°.
Now, turn on the wind tunnel and increase the airspeed to 60 mph. Take readings of the axial force, normal force, and pitching moment for pitch angles ranging from minus 8° to 18°, with 2° increments. After you have completed all of the measurements with the clean wing, turn the wind tunnel off and open the test section.
Adjust the wing to a new configuration, with the slat adjusted to have about 3/8 of an inch of slot. Rerun the experiment exactly the same way as for the clean wing, by first making no-wind measurements at minus 8 – 18° pitch angles with 2° increments. Then collect the same measurements at 60 mph.
After you have completed these measurements, modify the wing to a third configuration with the flaps set to 45° with respect to the chord line and the slat not deployed. Then rerun the measurements as before. Finally, adjust the wing to the fourth configuration, where both the slat and flap are deployed, and repeat the experiment.
Now let’s interpret the results. To analyze the data, we’ll first calculate the non-dimensional lift coefficient at each pitch angle, which is defined as shown. Rho infinity is the free stream density, V infinity is the free stream velocity, and S is the reference area of the wing. All of these values are known.
Lift, L, is calculated as a relation of two force pairs, where N is the normal force and A is the axial force. Both were measured by the sting balance. Alpha is the angle of attack, also called the pitch angle, in this experiment. Now, let’s look at a plot of the lift coefficient versus the pitch angle for each of the four configurations.
Comparing the clean wing and the slat configuration curves, we see that the two curves are almost overlapping at low angles of attack. However, the clean wing lift curve peaks at about 12°, but the slat curve continues to increase. This indicates that a slat can be used to increase lift. If we compare the clean wing and the flap lift curves, we see that the flap increases lift over the entire angle of attack range.If both the slat and flap are deployed at the same time, the benefit of both devices are combined and the maximum lift is even higher.
Next, calculate the drag coefficient for each angle, which is defined as shown. Drag, D, is also defined as a relation of the normal and axial force pairs. In comparing the drag coefficient for each configuration, we see that the drag increases dramatically with the flap and slat deployed. The resultant aerodynamic force, R, from drag and lift is located on a point on the wing called the center of pressure.
The center of pressure is not a fixed location, but instead moves with changing angle of attack. Thus, it is more convenient to calculate all forces and moments about the 1/4 chord point. Then, using the pitching moment at 1/4 chord, which is measured by the sting balance, we can calculate the pitching moment coefficient as shown.
Finally, looking at the pitching moment coefficient for each configuration and pitch angle, we see that the pitching moment coefficient goes into the negative regime with the flap deployed. This means that the center of pressure shifts towards the trailing edge with the flap deployed.
In summary, we learned how lift-generating apparatus are used to improve aircraft performance. We then evaluated a Clark Y-14 wing in a wind tunnel to see how a flap and a slat affects lift, drag, and pitching moment.
Related Videos
Aeronautical Engineering
8.3K 浏览
Aeronautical Engineering
26.3K 浏览
Aeronautical Engineering
21.0K 浏览
Aeronautical Engineering
13.3K 浏览
Aeronautical Engineering
8.7K 浏览
Aeronautical Engineering
16.2K 浏览
Aeronautical Engineering
37.9K 浏览
Aeronautical Engineering
11.4K 浏览
Aeronautical Engineering
8.0K 浏览
Aeronautical Engineering
4.9K 浏览
Aeronautical Engineering
48.8K 浏览
Aeronautical Engineering
7.2K 浏览
Aeronautical Engineering
8.5K 浏览
Aeronautical Engineering
10.2K 浏览
Aeronautical Engineering
9.1K 浏览