细胞可以参加物质从细胞外环境,通过内吞作用和积极释放到它通过胞吐作用的分子。这种过程涉及脂质膜囊称为泡。分子知识的和两个机制是结构的理解正常细胞生理学,以及出现当他们变得有缺陷的疾病状态的关键。
这个视频将首先简要回顾一下远藤和胞吐作用的研究史上的几个重要发现。下一步,将审查问题,其后用来探讨这些问题,包括标记细胞、 融合检测和荧光成像的突出方法讨论一些关键。最后,它将探讨今天正在进行的领域的科学家们的研究现状。
内吞和胞吐通路对于维持细胞内稳态、 组织功能和整体细胞生存至关重要。内吞作用简单地说,是一个单元格使用在分子从细胞外空间折叠了它周围的膜,要形成囊泡的过程。胞吐作用是相反的过程,使用囊泡释放到细胞外空间的物质。这些过程被认为对激素分泌、 膜受体内部化、 病原体被吞没,神经元通讯的关键作用。
今天,我们会折回的一些领域的内吞作用和胞吐作用的具有里程碑意义发现,突出一些悬而未决的问题,今天,使用的特征显著方法,最后,探讨几个特定实验更好地理解这些过程。
让我们重温一些重大的发现,导致目前对细胞内吞作用和胞吐作用的认识。
与有关的内吞作用的第一个文档可以映射回 1882 年,当伊利亚 Metchnikov,用光镜观察特定细胞吞噬入侵的病原体。他被称为”吞噬”这个过程,在细胞吞噬病原体通过囊泡形成。近半个世纪后,在 1931 年,沃伦 · 刘易斯观察到一个相似的囊泡形成过程当细胞液中。他叫这种行为”吞饮”。
后来在 1953 年,乔治 · 帕拉,在审查的结构和功能组织的单元格,同时发现像”洞穴”内陷的膜,并叫他们质膜微囊。他推断,这些必须是所需的细胞摄入。不久之后,于 1955 年,诺贝尔奖得主克里斯蒂安德 · 迪铸造任期内吞作用,其中包括”吞噬”与”胞饮”。然而内, 吞作用的故事并不是还没有结束。
1975 年,迈克尔 · 布朗和约瑟夫 · 戈尔茨坦,与电子显微学专家理查德 · 安德森观察到,当低密度脂蛋白或低密度脂蛋白,将绑定到其细胞表面的受体,它会导致形成”涂层坑”。这些坑然后内在化,见低密度脂蛋白受体。这是发现的第三类,称为”受体介导的内吞作用”。在同一年,芭芭拉皮尔斯分离主要外壳蛋白,一种 triskelion 的分子,并把它命名为网格蛋白。因此,这一过程也称为”网格蛋白介导的内吞作用”。
那关于内吞作用。现在让我们讨论一下我们如何了解胞吐作用。1980 年,兰迪 Schekman 组生成酵母突变体分泌不足,并揭示了存在的重要的基因编码的蛋白胞吐作用的必要条件。
1993 年,詹姆斯 · 罗斯曼确定一些蛋白质,和基于其化学本质他们被称为陷阱。在他精,”网罗假说,”他提出这些螺旋结构钩到对方,造成膜靠近以足够的力量融合和产生胞吐作用。
大约在同一时间,托马斯 Südhof 建立了这一过程由钙敏感的蛋白质,称为 synaptotagmins,培育和准确计时囊泡融合的神经递质释放而在神经元也受到严格控制。在一起,这些科学家被授予诺贝尔奖在 2013 年。
尽管这些发现的广度,许多有趣的小游戏仍然。让我们看看一些今天我们将要探索的问题。
科学家们正在开始问的内吞作用和胞吐作用如何超越获取和分泌的物质。例如,如何融合泡持续释放的神经递质对细胞膜不用灾难性扩展的单元格的大小?他们正在试图确定信号,引起细胞内化膜,以抵消扩张和回收资源。
另一个有趣的话题是: 组件构成的复杂的分子机械驱动这些进程吗?例如,吞噬功能需要大膜变形包围入侵的病原体。科学家们正在调查如何细胞骨架蛋白像肌动蛋白有助于戏剧性膜重塑。
最后,因为异常细胞内吞作用和胞吐作用可以导致严重的疾病,科学家们感兴趣了解是什么原因导致这失调。正在审议的蛋白质之一是 α-突触核蛋白,其分泌物从神经元有牵连的附近神经元的逐渐死亡。理解其胞吐可以神经退行性疾病,如帕金森症的治疗提供有价值的见解。
现在,我们已经考虑了一些关键问题,正在接受调查,让我们看看什么工具,可用来回答这些问题。
研究人员利用细胞生物素化检测跟踪内吞作用的细胞表面蛋白。这一过程涉及到标签表面蛋白的荧光标记生物素,以及然后允许细胞进行细胞内吞作用。后面可以免疫印迹分析,揭示蛋白质内化。
为了量化神经元囊泡回收,很多科学家标签具有特定于膜的荧光分子,如 FM 染料的单元格。这些染料稳定绑定到外部的单张,并只有内化通过内吞作用。之后连续刺激,他们被 exocytosed。用荧光显微镜分析发布允许更深入地洞察整个回收过程。
通常情况下,为了操作并了解组件,它们允许胞吐作用的贡献,科学家们成立了融合检测方法。两套不同的荧光染料含量囊泡是编写并且允许走到一起。它们在形成新的产品,可以使用酶标仪进行监测的结果之间的融合。
最后,复杂的成像方法,包括荧光成像和荧光活细胞成像,目前研究人员与图像中的形态结构和分子事件的内吞作用和胞吐作用的独特机会。
最后,让我们看看一些具体的方法,科学家们正在实施这些工具在实验室中的今天。
细胞生物学家感兴趣学习如何胞吐作用帮助治愈受伤的膜。在这里,研究人员首先受伤细胞 FM 染料溶液中的滚过的玻璃珠。随后荧光成像显示胞吐作用速度快,它会迅速查封膜并停止 FM 泄漏到单元格中。当胞吐作用是缓慢的时它导致广泛的细胞内 FM 染色。
研究人员可以使用融合检测模型具体融合蛋白的贡献。在这里,研究人员表示不同的关联囊泡膜蛋白或”鞋”,这是圈套蛋白质,两个池的细胞表面。融合了然后允许发生,和结果量化使用光谱仪。使用此设置,科学家们能够比较多的鞋面融合效率。
最后,研究人员的目标理解细胞表面受体胞吞作用的药物反应。在这里,科学家们治疗荧光标记的细胞,用一种药物,和可视化的受体药使用延时显微镜实时发生的内吞作用。
你刚看了朱庇特的简介内吞作用和胞吐作用。在这个视频中,我们回顾了历史亮点的吞噬功能发现从开始到定义神经递质释放的机制。接下来,我们介绍了被问到的几个关键问题。我们还探究突出的研究策略,并讨论了一些他们当前的应用程序。一如既往,感谢您收看 !
Endocytic and exocytic pathways are critical for cellular homeostasis, tissue function, and overall cell survival. Simply put, endocytosis is the process that a cell uses to take in molecules from the extracellular space by folding its membrane around it and forming a vesicle. Exocytosis is the reverse process, which uses vesicles to release substances to the extracellular space. These processes have been suggested to play a critical role in hormone secretion, membrane receptor internalization, pathogen engulfment, and neuronal communications.
Today, we’ll retrace some of the landmark discoveries in the field of endocytosis and exocytosis, highlight some of the unanswered questions, feature notable methods that are used today, and lastly, explore a few specific experiments performed to better understand these processes.
Let’s revisit some of the momentous discoveries that led to the current understanding of endocytosis and exocytosis.
The first documentation related to endocytosis can be mapped back to 1882, when Ilya Metchnikov, using a light microscope, observed that specific cells engulfed invading pathogens. He called this process “phagocytosis,” where cells engulf pathogen via vesicle formation. Almost half a century later, in 1931, Warren Lewis observed a similar process of vesicle formation when cells took in fluid. He named this behavior “pinocytosis.”
Later in 1953, George Palade, while examining the structural and functional organization of the cell, discovered “cave-like” invaginations of the membranes, and called them caveolae. He inferred that these must be required for cell-intake. Soon after, in 1955, Nobel laureate Christian de Duve coined the term endocytosis, which encompassed “phagocytosis” and “pinocytosis.” However, the story of endocytosis wasn’t over yet.
In 1975, Michael Brown and Joseph Goldstein, with electron microscopy expert Richard Anderson, observed that when low density lipoprotein, or LDL, binds to its cell surface receptor, it leads to formation of “coated pits.” These pits are then internalized, and endocytose LDL receptors. This was the discovery of the third type, called “receptor-mediated endocytosis.” In the same year, Barbara Pearse isolated the major coat protein, a triskelion molecule, and named it as clathrin. Therefore, this process is also called “clathrin-mediated endocytosis.”
That was all regarding endocytosis. Now let’s discuss how we learned about exocytosis. In 1980, Randy Schekman’s group generated yeast mutants that were secretion deficient, and revealed the presence of critical genes that coded for proteins necessary for exocytosis.
In 1993, James Rothman identified some of these proteins, and based on their chemical nature they were called SNAREs. In his seminal, “SNARE hypothesis,” he proposed that these helical structures hook on to each other, causing membranes to come closer with sufficient force to fuse and generate exocytosis.
Around the same time, Thomas Südhof established that this process was also tightly controlled in neurons by calcium-sensing proteins called synaptotagmins that fostered and accurately timed vesicle fusion for neurotransmitter release. Together, these scientists were awarded the Nobel Prize in 2013.
Despite the breadth of these discoveries, many intriguing puzzles remain. Let’s take a look at some of the questions being explored today.
Scientists are starting to ask how the functions of endocytosis and exocytosis go beyond acquiring and secreting substances. For example, how are neurotransmitters continuously released by vesicles fusing to the cell membrane without a catastrophic expansion of cell size? They are trying to identify signals that cause cells to internalize membrane, in order to offset the expansion and recycle resources.
Another interesting topic is: what components make up the sophisticated molecular machinery that drives these processes? For example, phagocytosis necessitates large membrane deformations to surround invading pathogens. Scientists are investigating how cytoskeletal proteins like actin contribute to dramatic membrane remodeling.
Lastly, since aberrant endocytosis and exocytosis can result in serious diseases, scientists are interested in understanding what causes this dysregulation. One of the proteins being scrutinized is α-synuclein, whose secretion from neurons has been implicated in the progressive death of nearby neurons. Understanding its exocytosis could provide valuable insights on the treatment of neurodegenerative diseases like Parkinson’s.
Now that we’ve considered some of the key questions being investigated, let’s see what tools are available to answer them.
Researchers use a cell biotinylation assay to track endocytosis of cell surface proteins. This process involves labeling a surface protein with fluorescently tagged biotin, and then allowing the cell to undergo endocytosis. This can be followed by immune blot analysis, revealing protein internalization.
In order to quantify neuronal vesicle recycling, many scientists label cells with membrane-specific fluorescent molecules, like FM dyes. These dyes bind stably to the outer leaflet, and are only internalized by endocytosis. Following sequential stimulation, they are exocytosed. Analyzing release with a fluorescence microscope allows deeper insight into the whole recycling process.
Often, to manipulate and understand the contributions of components that allow exocytosis, scientists set up fusion assays. Two sets of vesicles with distinct fluorescent dye contents are prepared and allowed to come together. Fusion between them results in formation of a new product, which can be monitored using a microplate reader.
Lastly, sophisticated imaging methods, including fluorescence imaging and fluorescence live cell imaging, present researchers with the unique opportunity to image morphological structures and molecular events of endocytosis and exocytosis.
Finally, let’s look at some specific ways in which scientists are implementing these tools in labs today.
Cell biologists are interested in studying how exocytosis helps heal injured membranes. Here, researchers first injured cells in solution of FM dyes by rolling glass beads over them. Subsequent fluorescence imaging shows that if the rate of exocytosis is fast, it will quickly seal up the membrane and stop FM leaking into the cell. When exocytosis is slow, it results in extensive intracellular FM staining.
Researchers can use fusion assays to model the contribution of specific fusion proteins. Here, researchers expressed different vesicle-associated membrane proteins or “VAMPs,” which are SNARE proteins, on the surface of two pools of cells. The fusion was then allowed to take place, and the result was quantified using a spectrometer. Using this setup, scientists were able to compare the fusion efficiencies of multiple VAMPs.
Lastly, researchers are aiming to understand cell surface receptor endocytosis in response to a drug. Here, scientists treated fluorescently tagged cells with a drug, and visualized receptor medicated endocytosis happening in real time using time-lapse microscopy.
You’ve just watched JoVE’s introduction to endocytosis and exocytosis. In this video, we reviewed the historical highlights starting from the discovery of phagocytosis to defining the mechanisms of neurotransmitter release. Next, we introduced a few key questions being asked. We also explored prominent research strategies, and discussed some of their current applications. As always, thanks for watching!
Related Videos
Cell Biology
75.4K 浏览
Cell Biology
58.5K 浏览
Cell Biology
73.7K 浏览
Cell Biology
32.3K 浏览
Cell Biology
125.6K 浏览
Cell Biology
13.0K 浏览
Cell Biology
72.2K 浏览
Cell Biology
77.9K 浏览
Cell Biology
12.8K 浏览
Cell Biology
39.4K 浏览
Cell Biology
46.2K 浏览
Cell Biology
31.6K 浏览
Cell Biology
53.2K 浏览
Cell Biology
91.2K 浏览
Cell Biology
74.0K 浏览