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Abstract

To grasp an object successfully, we must select appropriate contact regions for our

hands on the surface of the object. However, identifying such regions is challenging.

This paper describes a workflow to estimate the contact regions from marker-based

tracking data. Participants grasp real objects, while we track the 3D position of both

the objects and the hand, including the fingers' joints. We first determine the joint

Euler angles from a selection of tracked markers positioned on the back of the hand.

Then, we use state-of-the-art hand mesh reconstruction algorithms to generate a mesh

model of the participant's hand in the current pose and the 3D position.

Using objects that were either 3D printed or 3D scanned-and are, thus, available

as both real objects and mesh data-allows the hand and object meshes to be co-

registered. In turn, this allows the estimation of approximate contact regions by

calculating the intersections between the hand mesh and the co-registered 3D object

mesh. The method may be used to estimate where and how humans grasp objects

under a variety of conditions. Therefore, the method could be of interest to researchers

studying visual and haptic perception, motor control, human-computer interaction in

virtual and augmented reality, and robotics.

Introduction

The capacity to grasp and manipulate objects is a key ability

that allows humans to reshape the environment to their

wants and needs. However, controlling multi-jointed hands

effectively is a challenging task that requires a sophisticated

control system. This motor control system is guided by several

forms of sensory input, amongst which vision is paramount.

Through vision, individuals can identify the objects in

the environment and estimate their position and physical

properties and can then reach, grasp, and manipulate those

objects with ease. Understanding the complex system that

links the input at the retinae with the motor commands

that control the hands is a key challenge of sensorimotor

neuroscience. To model, predict, and understand how this

system works, we must first be able to study it in detail. This
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requires high-fidelity measurements of both visual inputs and

hand motor outputs.

Past motion-tracking technology has imposed a number

of limitations on the study of human grasping. For

example, systems requiring cables attached to the

participants' hands1,2  tend to restrict the range of finger

motions, potentially altering the grasping movements or

the measurements themselves. Despite such limitations,

previous research has been able to identify several factors

that influence visually guided grasping. Some of these

factors include object shape3,4 ,5 ,6 , surface roughness7,8 ,9 ,

or the orientation of an object relative to the hand4,8 ,10 .

However, to overcome previous technological limitations,

the majority of this prior research has employed simple

stimuli and highly constrained tasks, thus predominantly

focusing on individual factors3,4 ,6 ,7 ,10 , two-digit precision

grips3,4 ,6 ,9 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 , single objects19 , or

very simple 2D shapes20,21 . How previous findings

generalize beyond such reduced and artificial lab conditions

is unknown. Additionally, the measurement of hand-object

contact is often reduced to the estimation of digit contact

points22 . This simplification may be appropriate to describe

a small subset of grasps in which only the fingertips are

in contact with an object. However, in the majority of real-

world grasps, extensive regions of the fingers and palm

come in contact with an object. Further, a recent study23

has demonstrated, using a haptic glove, that objects can be

recognized by how their surface impinges on the hand. This

highlights the importance of studying the extended contact

regions between the hands and the objects grasped, not just

the contact points between the objects and the fingertips22 .

Recent advances in motion capture and 3D hand modeling

have allowed us to move past previous limitations and

to study grasping in its full complexity. Passive marker-

based motion tracking is now available with millimeter-sized

markers that can be attached to the back of the participant's

hands to track joint movements24 . Further, automatic marker

identification algorithms for passive marker systems are

now sufficiently robust to almost eliminate the need for the

extensive manual postprocessing of marker data25,26 ,27 .

Markerless solutions are also reaching impressive levels

of performance at tracking animal body parts in videos28 .

These motion-tracking methods, thus, finally allow reliable

and non-invasive measurements of complex multi-digit hand

movements24 . Such measurements can inform us about joint

kinematics and enable us to estimate the contact points

between the hand and an object. Additionally, in recent

years, the computer vision community has been tackling the

problem of constructing models of the human hands that can

replicate the soft tissue deformations during object grasping

and even during self-contact between hand parts29,30 ,31 ,32 .

Such 3D mesh reconstructions can be derived from different

types of data, such as video footage33,34 , skeletal joints

(derived from marker-based35  or markerless tracking36 ), and

depth images37 . The first key advance in this domain was

provided by Romero et al.38 , who derived a parametric

hand model (MANO) from over 1,000 hand scans from 31

subjects in various poses. The model contains parameters for

both the pose and shape of the hand, facilitating regression

from different sources of data to a full hand reconstruction.

The more recent DeepHandMesh29  solution builds on this

approach by constructing a parametrized model through deep

learning and by adding penetration avoidance, which more

accurately replicates physical interactions between hand

parts. By combining such hand mesh reconstructions with 3D

tracked object meshes, it is, thus, now possible to estimate
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contact regions not just on the surface of objects32  but also

on the surface of the hand.

Here, we propose a workflow that brings together the

high-fidelity 3D tracking of objects and hand joints with

novel hand mesh reconstruction algorithms. The method

yields detailed maps of hand-object contact surfaces. These

measurements will assist sensorimotor neuroscientists in

extending our theoretical understanding of human visually

guided grasping. Further, the method could be useful to

researchers in adjacent fields. For example, human factor

researchers may use this method to construct better human-

machine interface systems in virtual and augmented reality18 .

High-fidelity measurements of human grasping behaviors can

also assist roboticists in designing human-inspired robotic

grasping systems based on the principles of interactive

perception39,40 ,41 ,42 ,43 . We, thus, hope that this method

will help advance grasping research across neuroscience

and engineering fields from sparse descriptions of highly

constrained tasks to fuller characterizations of naturalistic

grasping behaviors with complex objects and real-world

tasks. The overall approach is outlined in Figure 1.

 

Figure 1: Key steps in the proposed method. (A) Motion capture cameras image a workbench from multiple angles.

(B) A stimulus object is 3D printed from a triangulated mesh model. (C) Four spherical reflective markers are glued to the

surface of the real object. A semi-automated procedure identifies four corresponding points on the surface of the mesh

object. This correspondence allows us to roto-translate the mesh model to the 3D tracked position of the real object. (D)

Reflective markers are attached to different landmarks on the back of a participant's hand using double-sided tape. (E) The

motion capture system acquires the trajectories in 3D space of the tracked object and hand markers during a single trial.

(F) A participant-specific hand skeleton is constructed using 3D computer graphics software. Skeletal joint poses are then

estimated for each frame of each trial in an experiment through inverse kinematics. (G) Joint poses are input to a modified

version of DeepHandMesh29 , which outputs an estimated 3D hand mesh in the current 3D pose and position. (H) Finally, we

use mesh intersection to compute the hand-object contact regions. Please click here to view a larger version of this figure.
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Protocol

Prior to beginning an experiment, the participants must

provide informed consent in accordance with the institutional

guidelines and the Declaration of Helsinki. All the protocols

described here have been approved by the local ethics

committee of Justus Liebig University Giessen (LEK-FB06).

1. Installation of all the necessary software

1. Download the project repository at Data and Code

Repository.

2. Install the software listed in the Table of Materials (note

the software versions and follow the links for purchase

options and instructions).

3. Within the Data and Code Repository, open a command

window, and run the following command:
 

conda env create -f environment.yml

4. Download and install the pretrained DeepHandMesh29

instantiation following the instructions provided at https://

github.com/facebookresearch/DeepHandMesh.

1. Place DeepHandMesh in the folder

"deephandmesh" of the Data and Code Repository.

Replace the file "main/model.py" with the model.py

file contained in the Data and Code Repository.

2. Preparing the motion capture system

1. Position a workbench within a tracking volume imaged

from multiple angles by motion-tracking cameras

arranged on a frame surrounding the workspace (Figure

1A). Prepare reflective markers by attaching double-

sided adhesive tape to the base of each marker.

2. Execute Qualisys Track Manager (QTM) as an

Administrator.
 

NOTE: Executing QTM as an Administrator is necessary

for the Python SDK to take control of the QTM interface.

We advise always running QTM as an Administrator.

3. Calibrating the cameras

1. Place the L-shaped calibration object within the tracking

volume.

2. Within the QTM, click on Calibrate in the Capture menu,

or press the wand icon in the Capture toolbar. Wait for a

calibration window to open. Select the duration of the

calibration, and press OK.

3. Wave the calibration wand across the tracking volume

for the duration of the calibration. Press the Export

button, and specify a file path in which to export the

calibration as a text file. Accept the calibration by

pressing OK.

4. Creating a stimulus object

1. Construct a virtual 3D object model in the form of a

polygon mesh. Use a 3D printer to construct a physical

replica of the object model.
 

NOTE: The data repository in step 1.1 provides example

objects in STL and Wavefront OBJ file formats. Objects

in STL format are manifold and ready for 3D printing.

5. Preparing the stimulus object

1. Attach four non-planar reflective markers to the surface

of the real object. Place the object within the tracking

volume.

2. In the project repository, execute the Python script

"Acquire_Object.py". Follow the instructions provided by

https://www.jove.com
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the script to perform a 1 s capture of the 3D position of

the object markers.

3. Select all the markers of the rigid body. Right-click on

and select Define Rigid Body (6DOF) | Current Frame.

Enter the name of the rigid body, and press OK.

4. In the File menu, select Export | To TSV. In the new

window, check the boxes 3D, 6D, and Skeleton in the

Data Type settings. Check all the boxes in the General

settings. Press OK and then Save.

6. Co-registering real and mesh model versions of
the stimulus object

1. Open Blender, and navigate to the Scripting

workspace. Open the file "Object_CoRegistration.py",

and press Run. Navigate to the Layout workspace, and

press n to toggle the sidebar. Within the sidebar, navigate

to the Custom tab.

2. Select the .obj file to be co-registered, and press the

Load Object button.

3. Select the trajectory file that was exported in step 3.3, and

specify the names of the markers attached to the rigid

object separated by semicolons. In the Marker header,

specify the line in the trajectory file that contains the

column names of the data (counting starts at 0).

4. Select the corresponding rigid body file with the 6D suffix,

and specify the name of the rigid body defined in step

4.1. In the 6D header, specify the line in the rigid body

file that contains the column names of the data.

5. Press Load Markers. Translate and rotate the Markers

object and/or the Object object to align them. Specify a

mesh output file, and press Run Coregistration. This will

output an .obj file that contains the co-registered stimulus

mesh.

7. Setting up markers on the hands

1. Attach 24 spherical reflective markers on different

landmarks of a participant's hand using double-sided

tape.
 

NOTE: The specific positioning of the markers is

demonstrated in Figure 2.

1. Position the markers centrally on top of the

respective fingertips, as well as the distal

interphalangeal joints, proximal interphalangeal

joints, and metacarpophalangeal joints of the index

finger, middle finger, ring finger, and small finger.

2. For the thumb, position one marker each on

the fingertip and the basal carpometacarpal

joint, as well as a pair of markers each on

the metacarpophalangeal and the interphalangeal

joints.
 

NOTE: These marker pairs need to be displaced

in opposite directions perpendicular to the thumb's

main axis and are necessary to estimate the thumb's

orientation.

3. Finally, place markers at the center of the wrist and

on the scaphotrapeziotrapezoidal joint.

https://www.jove.com
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Figure 2: Marker placement on a participant's hand. Abbreviation: RH = right hand. Please click here to view a larger

version of this figure.

8. Acquiring a single trial

1. Ask the participant to place their hand flat on the

workbench with the palm facing downward and to close

their eyes. Place the stimulus object on the workbench in

front of the participant.

2. While the QTM is running, execute the Python script

"Single_Trial_Acquisition.py" in the project repository.

Follow the instructions provided by the script to capture a

single trial of the participant grasping the stimulus object.
 

NOTE: The script will produce an auditory cue. This will

signal to the participant to open their eyes and execute

the grasp. In our demonstrations, the task is to reach and

grasp the target object, lift it vertically by approximately

10 cm, set it down, and return the hand to its starting

position.

9. Labeling the markers

1. Within the QTM, drag and drop the individual marker

trajectories from Unidentified trajectories to Labeled

trajectories, and label them according to the naming

convention in Figure 2.

2. Select all the markers attached to the hand, and right-

click on and select Generate AIM model from selection.

In the new window, select Create new model based

on Marker connections from existing AIM model and

press the Next button.

3. Select the RH_FH model definition, and press Open.

Press Next, enter a name for the AIM model, and press

OK. Finally, press Finish to create an AIM model for the

participant's hand, which will be used to automatically

https://www.jove.com
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identify markers in successive trials from the same

participant.

10. Creating a personalized skeleton definition for
the participant

1. In the QTM, navigate to the Play menu, and select Play

with Real-Time Output.

2. Open Maya. Navigate to the QTM Connect shelf, and

press the Connect to QTM icon. In the new window,

check Markers, and press Connect. Now, press the

Play icon in the QTM Connect shelf.

3. Shift-select all the hand markers and press the Wash

Locators icon. Select the washed hand markers, and

press Ctrl + G. This will create a group node. Name the

group Markers.

4. Select all the hand markers. In the Modify menu, click

Search and Replace Names. Search for the RH_ prefix,

and delete the prefix for the markers.

5. Press the Import Solver icon in the QTM Connect shelf.

Load the skeleton definition "RH_FH.xml".

6. In the Windows menu, navigate to General Editors |

Namespace Editor. Within the new window, click on :

(root), and press New to create a new namespace, RH.

Click on the RH namespace, press New, and name the

new namespace ModelPose.

7. Select all the markers, click on the RH namespace,

and press Add Selected to add the markers to the RH

namespace.

8. Select the skeleton bones, click on the ModelPose

namespace, and press Add Selected to add the skeleton

bones to the ModelPose namespace.

9. Rotate, translate, and scale the skeleton to fit the marker

data. Next, for each skeleton joint individually, Shift +

Select the skeleton joint and its associated markers,

and press the Add Attachments icon. Finally, press the

Export Solver icon to export the new skeleton definition

to an XML file that can be loaded in the QTM (see next

step).
 

NOTE: This step is not strictly necessary, but it is

useful to increase the accuracy of the skeleton fit

to the marker data. Read the QSolverQuickstartGuide

on https://github.com/qualisys/QTM-Connect-For-Maya

for more information.

11. Reconstruct the joint skeletal joint poses

1. Within the QTM, open the project settings by pressing

the gearwheel icon. In the sidebar, navigate to Skeleton

Solver, and press Load to select a skeleton definition

file. Adjust the Scale Factor to 100%, and press Apply.

2. Navigate to TSV Export, and check the boxes 3D, 6D,

and Skeleton in the Data Type settings. Check all the

boxes in the General settings. Press Apply, and close

the project settings.

3. Press the Reprocess icon, check the boxes Solve

Skeletons and Export to TSV file, and press OK.

12. Generating hand mesh reconstructions

1. Open a command window in the project repository,

and activate the conda environment by executing the

command:
 

conda activate contact-regions

2. Then, execute the following command, and follow the

instructions provided by the script to generate, for each

frame of the trial, a hand mesh reconstructing the current

hand pose.
 

https://www.jove.com
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python Hand_Mesh_Reconstruction.py --gpu 0 --

test_epoch 4
 

NOTE: These mesh reconstructions are generated

automatically using a modified version of the open-

source and pretrained hand mesh generation tool,

DeepHandMesh29 .

13. Generating hand-object contact region
estimates

1. Open a command window in the project repository,

execute the following command, and follow the

instructions provided by the script to generate hand

and object contact region estimates by computing the

intersection between the hand and object meshes.
 

blender --background --python

"Contact_Region_Estimation.py"

Representative Results

The first requirement for the proposed method is a system to

accurately track the position of 3D objects and hands. The

specific setup is shown in Figure 1A and uses hardware and

software produced by the motion capture company Qualisys.

We position a workbench within a tracking volume (100 cm

x 100 cm x 100 cm), which is imaged from multiple angles

by eight tracking cameras and six video cameras arranged

on a cubical frame surrounding the workspace. The tracking

cameras track the 3D position of the reflective markers

within the tracking volume at 180 frames/s and with sub-

millimeter 3D spatial resolution. We employ 4 mm reflective

markers, which are attached to the objects and hands using

skin-friendly double-sided adhesive tape. The 3D marker

positions are processed by the motion capture software. The

discussion section also reviews alternative motion capture

systems that could be employed with the proposed method.

To obtain accurate 3D reconstructions of real objects being

grasped and manipulated, we propose two options. The first,

which is the one adopted here, is to start from a virtual 3D

object model in the form of a polygon mesh. Such 3D models

can be constructed using appropriate software (e.g., Blender

3D44 ) and then 3D printed (Figure 1B). The second option

is to take an existing, real 3D object and use 3D scanning

technology to construct a mesh model replica of the object.

Whichever the strategy, the end goal is to obtain both a

real 3D object and the corresponding virtual 3D object mesh

model. Of note, the approach described here works only with

rigid (i.e., non-deformable) objects.

Once the 3D surface of an object is available as a mesh

model, its position must be tracked and co-registered (Figure

1C). To do so, four non-planar reflective markers are attached

to the surface of the real object, and the object is placed within

the tracking volume. The 3D positions of the object markers

are then briefly captured. This capture is used to establish the

correspondence between the four markers and four vertices

of the object mesh model. This is done using a simple ad

hoc software route written in Blender’s Python API. Within

Blender’s Viewport, the program presents the virtual object

together with the marker positions which are represented as a

single mesh object comprised of one sphere for each marker.

The user can then rotate and translate the object and/or the

markers to align them such that they co-align with the real

markers placed on the real object. The program will register

the rotations and translation that are applied to calculate a

single roto-translation that is finally applied to the original

object mesh, providing an object mesh that is co-registered

with the rigid body definition in QTM.

Having established correspondence, whenever the real

object is moved within the tracking volume, the virtual

https://www.jove.com
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object can be placed in the new position by computing the

roto-translation between the tracked markers and the four

corresponding mesh vertices. To record the dynamics of the

grasp instead, a total of 24 spherical reflective markers are

attached on different landmarks of the hand using double-

sided tape (Figure 1D and Figure 2).

At the beginning of a trial (Figure 1E), a participant places

their hand flat on the workbench with the palm facing

downward and closes their eyes. The experimenter places

a target object on the workbench in front of the participant.

Next, an auditory cue signals to the participant to open

their eyes and execute the grasp. In our demonstrations,

the task is to reach and grasp the target object, lift it

vertically by approximately 10 cm, set it down, and return

the hand to its starting position. A script written in Python

3.7 controls the experiment. On each trial, the script selects

and communicates the current condition settings to the

experimenter (e.g., object identity and positioning). The script

also controls the trial timing, including auditory cues and the

start and stop of the motion capture recordings.

Limbs are not only characterized by their position in 3D

space but also by their pose. Thus, to obtain a complete

3D reconstruction of a human hand executing a real grasp,

we require not only the positions of each joint in 3D space

but also the relative pose (translation and rotation) of each

joint with respect to its parent joint (Figure 1F). Skeletal

joint positions and orientations can be inferred from marker

positions using inverse kinematics. To do so, here we employ

the skeleton solver provided by the QTM software. For the

solver to work, we must first provide a skeleton definition

that links the position and orientation of each joint to multiple

marker positions. A skeleton definition is, thus, constructed,

and the skeleton rig is linked to the marker data using the QTM

Connect plugin for Maya. We create personalized skeleton

definitions for each participant to maximize the accuracy of

the skeleton fits to the marker data. For each participant,

we manually fit a hand skeleton to a single frame of motion

capture data. Having obtained a participant-specific skeleton

definition, we then run the skeleton solver to estimate the

skeletal joint poses for each frame of each trial in the

experiment.

For each frame of each trial in an experiment, we generate

a hand mesh that reconstructs the current hand pose using

the open-source and pretrained hand mesh generation tool,

DeepHandMesh28  (Figure 1G). DeepHandMesh is a deep

encoder-decoder network that generates personalized hand

meshes from images. First, the encoder estimates the pose

of a hand within an image (i.e., the joint Euler angles).

Then, the estimated hand pose and a personalized ID vector

are input to the decoder, which estimates a set of three

additive correctives to a rigged template mesh. Finally, the

template mesh is deformed according to the estimated hand

pose and correctives using linear blend skinning. The first

corrective is an ID-dependent skeleton corrective through

which the skeletal rig is adjusted to incorporate the person-

specific joint positions. The other two correctives are mesh

correctives through which the mesh vertices are adjusted to

better represent the hand surface of the participant. One of

the mesh correctives is an ID-dependent mesh corrective that

accounts for the surface structure of an individual participant's

hand. The final mesh corrective instead is a pose-dependent

vertex corrective that accounts for hand surface deformations

due to the current hand pose.

DeepHandMesh is trained using weak supervision with 2D

joint key points and scene depth maps. Here, we use only the

pretrained DeepHandMesh decoder to generate hand mesh

https://www.jove.com
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reconstructions, modified in the following ways (Figure 3).

First, as the network is not trained on specific participants,

the generic ID-dependent mesh corrective provided with the

pretrained model is employed (Figure 3A). Further, the ID-

dependent skeleton corrective is derived using the QTM

skeleton solver as described above (Figure 3B). Proportional

scaling of the hand with the skeleton length is assumed, and

the mesh thickness is uniformly scaled by a factor derived

from the relative scaling of the skeleton such that the mesh

better approximates the participant's hand size (Figure 3C).

This modified mesh is input to the decoder, together with the

current hand pose (derived from the marker data) and the

3D position and orientation of the wrist. The decoder, thus,

computes the current pose-dependent corrective, applies all

the correctives and roto-translations, and outputs a 3D hand

mesh reconstruction of the current hand pose in the same

coordinate frame as the 3D tracked object mesh (Figure 3D).

 

Figure 3: Modifications to the pretrained DeepHandMesh decoder. (A) Fixed, generic ID-dependent mesh corrective. (B)

ID-dependent skeleton corrective derived through inverse kinematics in step 10. (C) The size of the hand mesh is scaled by

the same factor as the skeletal joints. (D) Final 3D hand mesh reconstruction of the current hand pose. Please click here to

view a larger version of this figure.

Having reconstructed 3D mesh models for both a participant's

hand and a grasped object, hand-object contact regions can

be estimated by computing the intersection between the hand

and object meshes (Figure 1H). The assumption behind this

is that the real hand is deformed by contact with the surface,

meaning the skeleton can come closer to the surface than

would be possible if the hand were rigid, which allows portions

of the hand mesh to pass through the object mesh. As a

result, the contact areas can be approximated as the regions

of overlap between the two meshes.

Specifically, to compute these regions of overlap, we define

object mesh vertices that are contained within the 3D volume

of the hand mesh as being in contact with the hand.

These vertices are identified using a standard raytracing

approach45 . For each vertex of the object mesh, a ray is

cast from that vertex to an arbitrary 3D point outside the

hand mesh. We then assess the number of intersections

that occur between the cast ray and the triangles composing

the hand's surface. If the number of intersections is odd,

the object vertex is contained inside the hand mesh. If the

number of intersections is even, then the object vertex is

outside the hand mesh. The contact regions on the surface

of the object can, thus, be approximated as the set of triangle

faces whose vertices are all contained within the hand mesh.

We can apply the same rationale to the hand mesh vertices

contained in the 3D volume of the object mesh to estimate

https://www.jove.com
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the contact regions on the surface of the hand. Notably, more

advanced approaches to Boolean mesh operations could also

be used31 .

Video 1 shows a video of a hand, tracked points, and

co-registered mesh all moving side-by-side during a single

grasp to a 3D-printed cat figurine. Figure 4A instead shows

a single frame at the time of hand-object contact from a

grasp to a 3D-printed croissant, together with the hand-object

mesh reconstructions (Figure 4B) and the estimated contact

regions on the surface of the croissant (Figure 4C).

 

Figure 4: Estimated hand-object contact regions. (A) Tracked hand and object viewed from one of the tracking cameras

during a grasp. (B) Reconstructed hand mesh and tracked object mesh rendered from the same viewpoint as the tracking

camera. (C) Contact regions on the surface of the object seen from multiple viewpoints. Please click here to view a larger

version of this figure.

Video 1: Mesh reconstructions of the hand and object.

Gif animation of the hand, tracked markers, and the hand

and object mesh reconstructions during a single grasp viewed

from the same camera viewpoint. Please click here to

download this Video.

Discussion

We propose a method that enables the estimation of contact

regions for hand-object interactions during multi-digit grasps.

As full tracking of the whole surface of a hand is currently

intractable, we propose using a reconstruction of a hand

mesh whose pose is determined by sparse key points on

the hand. To track these sparse key points, our solution

employs a research-grade motion capture system based on

passive marker tracking. Of course, other motion capture

systems could also be employed with the proposed method,

granted that they yield sufficiently accurate 3D position data.

We advise against active marker motion capture systems

(such as the popular but discontinued Optotrak Certus), since

these require attaching cables and/or electronic devices to

the participants' hands, which may restrict movements or at

least yield less typical grasps as participants are made more

consciously aware of the pose of their hands. Motion-tracking

gloves using inertial measurement units may be a possibility,

even though these systems are known to suffer from drift, may

also restrict hand movements, and do not allow for the surface

of the hand to come into full and direct contact with the object

surfaces. Commercial markerless hand-tracking solutions

(e.g., the Leap Motion46,47 ,48 ) may also be a possibility,

although it may not be possible to track object positions

with these systems alone. The most promising alternative

option to a research-grade motion capture system is given

https://www.jove.com
https://www.jove.com/
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by open-source, markerless tracking solutions (e.g., Mathis

et al.28 ). If used with multiple co-registered cameras49 , such

systems could potentially track hand joint positions and object

positions in 3D without the need of markers, gloves, or cables.

These solutions, as well as this marker-based system, may

suffer, however, from data loss issues due to occlusions.

Limitations and future directions
 

As the hand reconstructions obtained through this method

will not be fully accurate, there are some limitations to the

types of experiments for which the method should be used.

Deviations in hand mesh reconstructions from ground truth

will manifest themselves in deviations in the estimated hand/

object contact regions. Thus, applying this method to derive

absolute measures would require assessing the fidelity of

the contact region estimates. However, even approximate

estimates can still be useful in within-participant experimental

designs because the potential biases of the method are

likely to affect different experimental conditions within a

participant in a similar way. Therefore, statistical analyses

and inferences should be performed only on measures such

as the differences in contact area between conditions, where

the direction of an effect will correlate with the respective

ground truth. In future research, we plan to further validate our

approach, for example by comparing contact region estimates

to thermal fingerprints on objects covered in thermochromic

paint.

Most processing steps from the data collection to the final

contact region estimation are fully automated and, thus, offer

important contributions toward a standardized procedure for

hand-object contact region estimation. However, an initial

fit of the individualized skeletons to the 3D positions of the

tracked markers must still be performed manually to obtain

a skeleton definition for each participant. As the number of

participants for an experiment increases, so does the number

of manual fits, and this is currently the most time-consuming

step in the procedure and requires some familiarity with

manual rigging in the Autodesk Maya Software. In the future,

we aim to automate this step to avoid human influence on

the procedure by adding an automatic skeleton calibration

procedure.

The workflow described here relies on the Qualisys hardware

and software (e.g., the QTM skeleton solver). This currently

limits the accessibility of our method to laboratories that have

a similar setup. In principle, however, the method can be

applied to any source of motion capture data. To expand the

accessibility, in ongoing work, we are exploring alternatives

that should generalize our workflow and make it less reliant

on specific hardware and software licenses.

Another important limitation of the method is that, in its current

form, it can only be applied to rigid (non-deformable) objects.

In the future, this limitation could be overcome using methods

for recording the surface shape of the grasped object as

it deforms. Additionally, due to its approximate nature, the

method is not currently well suited to very small or thin objects.

In conclusion, by integrating state-of-the-art motion tracking

with high-fidelity hand surface modeling, we provide a

method to estimate hand-object contact regions during

grasping and manipulation. In future research, we plan

to deploy this method to investigate and model visually

guided grasping behavior in humans16 . We further plan to

integrate these tools with eye tracking46,  50,51 ,52  and virtual/

augmented reality systems53,54 ,55  to investigate visually

guided hand and eye movement motor control in real

and virtual naturalistic environments18,46 ,56 ,57 . For these

reasons, the proposed method could be of interest to

researchers studying haptic perception58 , motor control, and

https://www.jove.com
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human-computer interaction in virtual and augmented reality.

Finally, accurate measurements of human grasping abilities

could inform the design of robust robotic systems based

on the principles of interactive perception39,40 ,41 ,42 ,43  and

may have translational applications for upper limb prosthetics.
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