Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove

16.8: Titration Calculations: Weak Acid - Strong Base

TABLE OF
CONTENTS
JoVE Core
Chemistry

Ein Abonnement für JoVE ist erforderlich, um diesen Inhalt ansehen zu können. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

Education
Titration Calculations: Weak Acid - Strong Base
 
TRANSCRIPT

16.8: Titration Calculations: Weak Acid - Strong Base

Calculating pH for Titration Solutions: Weak Acid/Strong Base

For the titration of 25.00 mL of 0.100 M CH3CO2H with 0.100 M NaOH, the reaction can be represented as:

Eq1

The pH of the titration solution after the addition of the different volumes of NaOH titrant can be calculated as follows:

(a) The initial pH is computed for the acetic acid solution in the usual ICE approach:

Eq2

(b) The acid and titrant are both monoprotic and the sample and titrant solutions are equally concentrated; thus, this volume of titrant represents the equivalence point. Unlike the strong-acid example, the reaction mixture in this case contains a weak conjugate base (acetate ion). The solution pH is computed considering the base ionization of acetate, which is present at a concentration of

Eq3

Base ionization of acetate is represented by the equation

Eq4

Assuming x << 0.0500, the pH may be calculated via the usual ICE approach:

Eq5

Note that the pH at the equivalence point of this titration is significantly greater than 7, as expected when titrating a weak acid with a strong base.

(c) Titrant volume = 12.50 mL. This volume represents one-half of the stoichiometric amount of titrant, and so one-half of the acetic acid has been neutralized to yield an equivalent amount of acetate ion. The concentrations of these conjugate acid-base partners, therefore, are equal. A convenient approach to computing the pH is use of the Henderson-Hasselbalch equation:

Eq6

(pH = pKa at the half-equivalence point in a titration of a weak acid)

(d) Titrant volume = 37.50 mL. This volume represents a stoichiometric excess of titrant, and a reaction solution containing both the titration product, acetate ion, and the excess strong titrant. In such solutions, the solution pH is determined primarily by the amount of excess strong base:

Eq7

This text is adapted from Openstax, Chemistry 2e, Section 14.7: Acid-base Titrations.

Tags

Titration Calculations Weak Acid Strong Base PH Calculation Ka Kb ICE Table Henderson-Hasselbalch Equation Neutralization Reaction Hydronium Ions Hydroxide Ions Acetic Acid Solution Sodium Hydroxide Buffer Moles Of Acetate Moles Of Acetic Acid Buffer PH PKa Equivalence Point

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter