Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove

16.15: Qualitative Analysis

TABLE OF
CONTENTS
JoVE Core
Chemistry

Ein Abonnement für JoVE ist erforderlich, um diesen Inhalt ansehen zu können. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

Education
Qualitative Analysis
 
TRANSCRIPT

16.15: Qualitative Analysis

For solutions containing mixtures of different cations, the identity of each cation can be determined by qualitative analysis. This technique involves a series of selective precipitations with different chemical reagents, each reaction producing a characteristic precipitate for a specific group of cations. Metal ions within a group are further separated by varying the pH, heating the mixture to redissolve a precipitate, or adding other reagents to form complex ions.

For instance, group IV cations, which consist of insoluble carbonates and phosphatases such as Ba2+, Ca2+, and Mg2+, all form white precipitates in the presence of diammonium hydrogen phosphate ((NH4)2HPO4) in a basic solution. The precipitates are dissolved in dilute acetic acid. To identify each cation, a confirmatory test is performed.

All three cations form bright yellow chromate salts upon the addition of potassium chromate (K2CrO4); however, only barium chromate (BaCrO4) is insoluble in acetic acid.  The solution can be filtered, and the filtrate contains Ca2+ and Mg2+.

The filtrate can now be divided into two parts to test for the remaining cations. If the solution forms a white precipitate in the presence of ammonium oxalate ((NH4)2C2O4) solution, Ca2+ ions can be confirmed. The white precipitate is that of calcium oxalate, which is insoluble in both water and acetic acid.

Mg2+ is identified by a charcoal cavity test. In this test, metallic carbonates are decomposed into the corresponding metal oxide in a charcoal cavity. The color of the residue indicates the possible cation. Magnesium oxide (MgO) leaves a white residue in the charcoal cavity. This residue is treated with a few drops of Cobalt nitrate (Co(NO3)2) solution. With heat, cobalt nitrate decomposes into cobalt (II) oxide, which forms a pink amalgam (CoO-MgO), confirming the presence of Mg2+.


Suggested Reading

Tags

Qualitative Analysis Metal Ions Cations Precipitating Reagent Insoluble Salts Aqueous Solutions Group 1 Cations Chloride Salts Hydrochloric Acid Precipitate Centrifugation Filtration Supernatant Hydrogen Sulfide Gas Metal Sulfide Protons Acidic Conditions Group 2 Metal Ions

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter