Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove

20.5: The Tumor Microenvironment

JoVE Core
Molecular Biology

Ein Abonnement für JoVE ist erforderlich, um diesen Inhalt ansehen zu können. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

The Tumor Microenvironment

20.5: The Tumor Microenvironment

Every normal cell or tissue is embedded in a complex local environment called stroma, consisting of different cell types, a basal membrane, and blood vessels. As normal cells mutate and develop into cancer cells, their local environment also changes to allow cancer progression. The tumor microenvironment (TME) consists of a complex cellular matrix of stromal cells and the developing tumor. The cross-talk between cancer cells and surrounding stromal cells is critical to disrupt normal tissue homeostasis and favor tumor progression.

Cancer-associated fibroblasts (CAFs)

Fibroblasts produce collagen and are involved in tissue repair. During the natural process of wound healing, fibroblasts are transiently present for the initial healing process. Nevertheless, in cancer, the fibroblasts remain constitutively active so that they can remodel the extracellular matrix, induce angiogenesis, recruit inflammatory cells, and stimulate cancer cell proliferation.


Tumor growth is accompanied by active blood vessel growth at the tumor site due to the release of vascular endothelial growth factor or VEGF from the cancer cells and stromal cells. VEGF is an essential growth factor for angiogenesis during tumor progression. Therefore, therapies that can target the synthesis and activity of VEGF or the VEGF receptors in the tumor microenvironment have shown significant improvement in patient survival.

Adipose cells

Hypoxia in adipose or fat tissue is highly pro-inflammatory and promotes tumor formation and maintenance. Additionally, adipose cells secrete more than 50 different cytokines and chemokines that can increase the chances of tumor initiation. Excess adipocytes in the tumor microenvironment can lead to increased blood estrogen, chronic and low-grade inflammation resulting in cancer development.

ECM and tumor microenvironment

An extracellular matrix (ECM) is a dynamic and complex structure that supports tissues and cells. The ECM contains cytokines and growth factors secreted by the tumor and stromal cells. ECM components also include collagens, laminins, fibronectins, proteoglycans, and hyaluronans. The ECM helps tumors in several ways: First, ECM components facilitate angiogenesis by providing nourishment to the stalk cells, the building blocks of new blood vessels. Second, they act as chemoattractants to immune cells to initiate inflammation at tumor sites. Inflammation facilitates rapid cell division and angiogenesis. Third, altered collagen cross-links in the ECM allow tumor cells to escape immune surveillance and metastasize to new locations in the body.

Tumor management strategies must involve effective TME management. Targeting microenvironments can help create a hostile environment for tumor cells that may lead to effective therapy and hence, increase in patient survival.

Suggested Reading


Keywords: Tumor Microenvironment Cancer-associated Fibroblasts (CAFs) Angiogenesis VEGF Adipose Cells Extracellular Matrix (ECM) Collagens Laminins Fibronectins Proteoglycans Hyaluronans Inflammation Tumor Progression

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter