Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove

32.5: Tissue Homogenization and Cell Lysis

TABLE OF
CONTENTS
JoVE Core
Cell Biology

Ein Abonnement für JoVE ist erforderlich, um diesen Inhalt ansehen zu können. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

Education
Tissue Homogenization and Cell Lysis
 
TRANSCRIPT

32.5: Tissue Homogenization and Cell Lysis

Tissue homogenization involves disintegrating tissue architecture and lysing cells, and is an early step in isolating and analyzing cellular components. The method used for homogenization depends on the sample type, the amount of sample available, the analyte to be obtained, and the sensitivity of the method. These methods are broadly classified as mechanical and non-mechanical methods.

Mechanical methods of tissue homogenization

These methods rely on applying external physical force to disrupt tissues and cells. They make use of specialized tools and instruments for homogenization. These instruments use grinding, shearing, blending, beating, or shock to disintegrate the sample. For example, in a French press, the sample is pushed through a small opening under pressure which causes the cells to disrupt. Other homogenizers such as Waring blenders and rotor-stators cut and shear the tissues into significantly smaller sizes.

Non-mechanical methods of tissue homogenization

Non-mechanical lysis methods involve chemical disruptions rather than physical forces to lyse the cells. The tissue is homogenized in a lysis buffer that regulates pH, ionic strength, osmotic strength, and enzymatic activity. The lysis buffer thus aids cell lysis and protects the cell components from damage.

While the enzymes of the lysis buffer help degrade the extracellular matrix of tissues to release individual cells, the surfactant or detergent helps disrupt cell membranes and denature proteins. Sodium dodecyl sulfate (SDS) and Triton-X 100 are two popularly used detergents in these buffers. Another component, the chaotropes, disrupt weak interactions between molecules, thus denaturing the proteins and keeping nucleic acids intact during isolation.

Other non-mechanical physical methods involve using temperature cycles in which the sample is frozen on dry ice or in an ethanol bath and then thawed at room temperature or 37℃. These repeated cycles cause the cell membranes to weaken and rupture. Cell membranes can also be ruptured by osmotic imbalance by placing them in a hypotonic or hypertonic solution. The inward or outward movement of water due to the osmotic gradient causes the cells to swell and burst, or shrink and collapse, releasing their internal contents.

While numerous methods and tools are available for homogenization, each has pros and cons that must be evaluated based on the specific requirements. Often, mechanical methods alone may not wholly or efficiently homogenize a sample. In such cases, mechanical methods may be combined with non-mechanical methods for complete homogenization.

While numerous methods and tools are available for homogenization, each has pros and cons that must be evaluated based on the specific requirements. Often, mechanical methods alone may not wholly or efficiently homogenize a sample. In such cases, mechanical methods may be combined with non-mechanical methods for complete homogenization.


Suggested Reading

Tags

Keywords: Tissue Homogenization Cell Lysis Mechanical Methods Non-mechanical Methods French Press Waring Blender Rotor-stator Lysis Buffer Detergent Surfactant SDS Triton-X 100 Chaotropes Temperature Cycles Osmotic Imbalance Hypotonic Hypertonic

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter