Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove

29.8: Divergence and Curl of Magnetic Field

TABLE OF
CONTENTS
JoVE Core
Physics

Ein Abonnement für JoVE ist erforderlich, um diesen Inhalt ansehen zu können. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

Education
Divergence and Curl of Magnetic Field
 
TRANSCRIPT

29.8: Divergence and Curl of Magnetic Field

The magnetic field due to a volume current distribution given by the Biot–Savart Law can be expressed as follows:

Equation1

To evaluate the divergence of the magnetic field, the divergence is applied to both sides of the Biot–Savart equation:

Equation2

Applying the vector product rule, the term within the integral is simplified to the following equation:

Equation3

The first term involving the curl of the current density function is zero since the current density is independent of the field coordinates. Using vector analysis, the second term in the above equation also reduces to zero. Hence, the divergence of a magnetic field is zero:

Equation4

The zero divergence of the magnetic field is valid for any field, irrespective of whether the field is static or time-dependent. This equation states that the magnetic flux that passes through an arbitrary closed surface is zero. This is possible only if the number of magnetic field lines that enter the closed surface equals the number of field lines that exit through this closed surface. Thus, magnetic field lines always form closed loops. It also implies that magnetic monopoles do not exist.

To evaluate the curl of the magnetic field, the curl is applied to both sides of the Biot–Savart equation:

Equation5

Again, by applying vector analysis, the equation is simplified:

Equation6

The curl of the magnetic field equals the vacuum permeability multiplied by the current density. The same result is obtained by applying Stoke's theorem to the integral form of Ampere's Law:

Equation7

Since the above relation holds for any closed loop, the integrands are equal. This equation is called the differential form of Ampere's Law.


Suggested Reading

Tags

Keywords: Magnetic Field Biot-Savart Law Divergence Curl Current Density Vector Analysis Ampere's Law Magnetic Monopoles Magnetic Flux Vector Field

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter