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Abstract

Recently, a new implementation of a previously described method for interpreting

genome-wide association study (GWAS) data using metabolic pathway analysis has

been developed and released. The Pathway Association Study Tool (PAST) was

developed to address concerns with user-friendliness and slow-running analyses. This

new user-friendly tool has been released on Bioconductor and Github. In testing, PAST

ran analyses in less than one hour that previously required twenty-four or more hours.

In this article, we present the protocol for using either the Shiny application or the R

console to run PAST.

Introduction

Genome-wide association studies (GWAS) are a popular

method of studying complex traits and the genomic regions

associated with them1,2 ,3 . In this type of study, hundreds

of thousands of single nucleotide polymorphism (SNP)

markers are tested for their association with the trait, and

the significance of the associations is assessed. Marker-

trait associations that meet the false discovery rate (FDR)

threshold (or some other type of significance threshold) are

retained for the study, but true associations may be filtered

out. For complex, polygenic traits, the effect of each gene

might be small (and thus filtered out), and some alleles are

only expressed in specific conditions that might not be present

in the study3 . Thus, while many SNPs may be retained as

associated with the trait, each may have a very small effect.

Too many SNP calls will be missing, and an interpretation

of the biological meaning and genetic architecture of the

trait may be incomplete and confusing. Metabolic pathway

analysis can help to address some of these issues by focusing
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on the combined effects of genes grouped according to their

biological function4,5 ,6 .

Several studies were completed using a previous

implementation of the method described in this article.

Aflatoxin accumulation7 , corn earworm resistance8 , and

oil biosynthesis9  were all studied with the previous

implementation. While these analyses were successful, the

process of analysis was complicated, time-consuming, and

cumbersome, because the analysis tools were written in a

combination of R, Perl, and Bash, and the pipeline was not

automated. Because of the specialized knowledge required to

modify this method for each analysis, a new method has now

been developed that can be shared with other researchers.

The Pathway Association Study Tool (PAST)10  was designed

to address the shortcomings of the previous method by

requiring less knowledge of programming languages and

by running analyses in a shorter period. While the method

was tested with maize, PAST makes no species-specific

assumptions. PAST can be run through the R console, as

a Shiny app, and an online version is expected to soon be

available on MaizeGDB.

Protocol

1. Setup

1. Install R, if it is not already installed.
 

NOTE: PAST is written in R and, therefore, requires that

its users have R installed. At the time of this writing,

installing PAST directly from Bioconductor requires

R4.0.  Older versions of PAST can be installed from

Bioconductor for R3.6, and PAST can be installed from

Github for users with R3.5. R installation instructions

can be downloaded from the following link: https://www.r-

project.org/.

2. Install the latest version of RStudio Desktop or update

RStudio (optional).
 

NOTE: RStudio is a helpful environment for working

with the R language. Its installation is recommended,

especially for those who choose to run PAST in the

command line rather than through the Shiny GUI

application. RStudio and its installation instructions

can be found at the following link: https://rstudio.com/

products/rstudio/.

3. Install PAST from Bioconductor11  by following the

instructions on Bioconductor.
 

NOTE: Installation through Bioconductor should handle

the installation of PAST's dependencies. Additionally,

PAST can be installed from Github12 , but installing from

Github will not install dependencies automatically.

4. Install PAST Shiny (optional). Download the file "app.R"

from the Releases page of the Github repository: https://

github.com/IGBB/PAST/releases/, and remember where

the downloaded file is located.
 

NOTE: PAST can be used by calling its methods directly

with R, but users who are less familiar with R can run

the PAST Shiny application, which provides a guided

user interface. PAST Shiny is an R script available in the

shiny_app branch of the PAST Github repository. PAST

Shiny will attempt to install its dependencies during the

first run.

5. Begin analysis by starting the application in one of the

three ways described below.

1. PAST Shiny with RStudio
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1. Using RStudio, create a new project in the folder

where app.R is located. Click File | New Project

and select that folder.

2. Once a new project has been created, open

the app.R file downloaded earlier. RStudio

recognizes that app.R is a Shiny app and

creates a Run App button on the bar above the

displayed source code. Click Run App. RStudio

will then launch a window that displays the

PAST Shiny application.

2. PAST Shiny with R Console

1. Launch R and run the following code to start the

PAST Shiny application: shiny::runApp('path/

to/folder/with/shiny/app.R'. Replace the text in

quotes with the folder to which app.R was

downloaded, and keep the quotes.

3. PAST without R Shiny

1. Run library(PAST) in an R Console to load

PAST.

2. Customize Shiny analysis (optional)

1. Change the analysis title from "New Analysis" to

something that better reflects the type of analysis being

run which helps to keep track of multiple analyses (see

Figure 1).

 

Figure 1. Please click here to view a larger version of this figure.

2. Modify the number of cores and the mode. Set the

number of cores to any number between 1 and the total

number on the machine but be aware that devoting more

resources to PAST may slow down other operations on

the machine. Set the mode based on the description in

section 6.

3. Load GWAS data

NOTE: Verify that the GWAS data is tab delimited. Ensure

that the association file contains the following columns:

trait, marker name, locus or chromosome, position on

the chromosome, p-value, and R2  value for the marker.

Ensure that the effects file contains the following columns:

trait, marker name, locus or chromosome, position on the

chromosome, and effect. The order of these columns is not
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important, as the user can specify the names of the columns

when loading the data. Any additional columns are ignored.

TASSEL13  can be used to produce these files.

1. Load GWAS data with PAST Shiny.

1. Select an association file and an effects file

by using the Association File and Effects File

selection boxes. Change the column names in the

Association Column Name and Effects Columns

Name input boxes below the file selection boxes to

reflect the column names in the data.

 

Figure 2. Please click here to view a larger version of this figure.

2. Load GWAS data with PAST in the R Console.

1. Modify and run the following code:
 

gwas_data = load_GWAS_data("path/to/

association_file.tsv", "path/to/effects_file.tsv",

association_columns = c("Trait", "Marker", "Locus",

"Site", "p", "marker_R2"), effects_columns =

c("Trait", "Marker", "Locus", "Site", "Effect")

3. NOTE: Change the paths to the actual location

of the GWAS files. The values provided for

association_columns and effects_columns are the

default values. If the names do not match the default

values, specify the column names. Otherwise, these can

be omitted.

4. Load linkage disequilibrium (LD) data

NOTE: Verify that the linkage disequilibrium (LD) data is tab

delimited and contains the following types of data: Locus,

Position1, Site1, Position2, Site2, Distance in base pairs

between Position1 and Position2, and R2  value.

1. Load LD data with PAST Shiny.

1. Select the file containing LD data. Change the

column names in the LD Column Names input

boxes below the file selection box to match the

column names in the LD data if necessary.
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Figure 3. Please click here to view a larger version of this figure.

2. Load LD Data with PAST in the R Console.

1. Modify and run the following code to load LD data:
 

LD = load_LD("path/to/LD.tsv", LD_columns =

c("Locus1", "Position1", "Site1", "Position2", "Site2",

"Dist_bp", "R.2")
 

NOTE: Change the path to the actual location of

the LD file. The values provided for LD_columns are

the default values. If the names do not match these

defaults, specify the correct names of the columns;

otherwise, these can be omitted.

5. Assign SNPs to genes

NOTE: Download or otherwise locate annotations in GFF

format. These annotations can often be found in online

databases for specific organisms. Be cautious about low

quality annotations, as the quality of the annotations data will

affect the quality of the pathway analysis. Confirm that the first

column of these annotations (the chromosome) matches the

format of the locus/chromosome in the association, effects,

and LD data. For example, the annotations should not call the

first chromosome "chr1" if the GWAS and LD data files call

the first chromosome "1".

1. Assign SNPs to genes with PAST Shiny.
 

NOTE: More information about determining an

appropriate R2  cutoff can be found in Tang et al.6 , in the

section called "SNP to gene algorithm for the pathway

analysis".

1. Select the file containing GFF annotations. Consider

what window size and R2  cutoff are most suitable

for the species being considered and modify if the

defaults do not suit the uploaded data.
 

NOTE: Default values in PAST primarily reflect

values appropriate for maize. The number of cores

set at the beginning of the PAST Shiny analysis

(Step 2.2) is used in this step.
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Figure 4. Please click here to view a larger version of this figure.

2. Assign SNPs to genes with PAST in the R Console.

1. Modify and run the following code to assign SNPs

to genes:
 

genes = assign_SNPs_to_genes(gwas_data, LD,

"path/to/annotations.gff", c("gene"), 1000, 0.8, 2)
 

NOTE: In this sample code, several default

suggestions are provided: 1000 is the size of the

window around the SNP to search for genes; 0.8 is

the cutoff value for R2 ; 2 is the number of cores used

for parallel processing. The path to the annotations

should also be changed to the actual location of the

annotations file.

6. Discover significant pathways

NOTE: Verify that the pathways file contains the following

data in tab delimited format, with one line for every

gene in each pathway: pathway ID - an identifier such

as "PWY-6475-1"; pathway description - a lengthier

description of what the pathways do such as "trans-lycopene

biosynthesis"; gene - a gene in the pathway, which should

match the names provided in the annotations. Pathway

information can likely be found in online databases for specific

organisms, such as MaizeGDB. The second user-specified

option is the mode. "Increasing" refers to phenotypes that

reflect when an increasing value of the measured trait is

desirable, such as yield, while "decreasing" refers to a trait

where a decrease in the measured values is beneficial, such

as insect damage ratings. The significance of pathways is

tested using previously described methods4,6 ,14 .

1. Discover significant pathways with PAST Shiny.

1. Select the file containing pathways data and be sure

that the mode is selected in the analysis options. If

necessary, change the number of genes that must

be in a pathway to retain it for the analysis and

the number of permutations used to create the null

distribution to test significance of effect.
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Figure 5. Please click here to view a larger version of this figure.

NOTE: The number of cores and the mode set at the

beginning of the PAST Shiny analysis (Step 2.2) is used

in this step. The default number of genes is currently set

at 5 genes, so pathways with fewer known genes will be

removed. The user can lower this value to 4 or 3, to include

shorter pathways, but doing so will risk false positive results.

Increasing this value can increase the power of the analysis

but will remove more pathways from the analysis. Changing

the number of permutations used increases and decreases

the power of the test.

2. Discover significant pathways with PAST in the R

Console.

1. Modify and run the following code to discover

significant pathways:
 

rugplots_data <- find_pathway_significance(genes,

"path/to/pathways.tsv", 5, "increasing", 1000, 2)
 

NOTE: In this sample code, several suggested

defaults are provided. 5 is the minimum number of

genes that must be in a pathway in order to keep

the pathway in the analysis, increasing refers to

an increasing amount of the measured trait (it is

recommended that the user run both increasing and

decreasing, regardless of trait; data interpretation

will differ for the two, however), 1000 is the number

of times to sample the effects to determine the null

distribution, and 2 is the number of cores used for

parallel processing. Change the path to the actual

location of the pathways file.

7. View Rugplots

1. View Rugplots with PAST Shiny.

1. Once all inputs are uploaded and set, click Begin

Analysis. A progress bar will appear and indicate

which step of the analysis was last completed.

When the analysis completes, PAST Shiny will

switch to the Results tab. A table of results will be

displayed in the left column (labeled "pathways") and

the Rugplots will be displayed in the right column

(labeled "plots").

2. Use the slider to control the filtering parameters.

When the filtering level is satisfactory, click the

Download Results button at the bottom left to

download all images and tables individually to a ZIP

file that is named with the analysis title. This ZIP file
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contains the filtered table, the unfiltered table, and

one image per pathway in the filtered table.

 

Figure 6. Please click here to view a larger version of this figure.

 

Figure 7. Please click here to view a larger version of this figure.

2. View Rugplots with PAST in the R Console

1. Modify and run the following code to save the results:
 

plot_pathways(rugplots_data, "pvalue", 0.02,

"increasing", "output_folder")
 

NOTE: In this sample code, several suggested

defaults are provided. pvalue provides the data

that can be used for filtering insignificant pathways

after a significance threshold is chosen by the

user; 0.02 is the default value used in filtering, and

increasing refers to an increasing amount of the

measured trait (it is recommended that the user run

both increasing and decreasing, regardless of trait;

data interpretation will differ for the two, however);

output_folder is the folder where the images and

tables will be written (this folder must exist prior to

running the function). A table of filtered results, the

unfiltered results, and individual images for every
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pathway in the filtered results are written to this

folder.

Representative Results

If results are not produced following a run of the PAST

software tool, check to be sure that all input files are correctly

formatted. A successful run using the example data in the

PAST package, which are based on a maize GWAS of grain

color, is shown in Figure 8. This table and the resulting image

can be downloaded using the Download Results button. An

example of the downloaded image is shown in Figure 210 .

Incorrect settings might lead to results that do not make

biological sense, but determining incorrectness must be up to

the researcher, who should double check the validity of the

chosen settings and consider all known evidence regarding

the trait of interest.

Figure 910  shows the rugplot produced from the pathway

analysis of GWAS results created with a maize panel of 288

inbred lines that had been phenotyped for grain color. This

simplistic example, where the phenotypes were either "white"

or "yellow", was used because the pathway responsible for

creating the bright yellow carotenoid pigments is known and

should be responsible for most of the phenotype. Thus, we

expected to see the trans-lycopene biosynthesis pathway

(which produce carotenoids) to be significantly associated

with grain color, which it is. Pathway ID and name are listed

at the top of the graph. The horizontal axis of the graph ranks

all genes that were included in the analysis, arranged from

left to right in order of largest effect on the trait to smallest.

However, only the genes in the trans-lycopene biosynthesis

pathway are marked (at the top of the graph, as hatch marks,

appearing in the gene rank of their effect as compared to

all other genes in the analysis). There are 7 genes in this

pathway. The running enrichment score (ES) is plotted along

the vertical axis. The ES for each gene is added into the

running total in order of effect and the total is adjusted to the

number of genes analyzed. Thus, the score changes as one

moves right along the horizontal axis and tends to increase

as the larger effect genes are included, but at some point,

the increase in the effect is smaller than the adjustment for

having added another gene, and the entire score begins to

decrease. The apex of the running ES line is marked with a

dotted vertical line; this is the ES for the entire pathway and

is used by the program to determine if the pathway is chosen

and presented as a rugplot.
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Figure 8: Completed run of PAST Shiny. Please click here to view a larger version of this figure.
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Figure 9: Pathway image from completed run of PAST (or downloaded from Shiny). This figure has been cited from

Thrash et al.10 . Please click here to view a larger version of this figure.

Discussion

A primary goal of PAST is to bring metabolic pathway

analyses of GWAS data to a wider audience, especially for

non-human and non-animal organisms. Alternative methods

to PAST are often command-line programs that focus on

humans or animals. User-friendliness was a primary goal in

the development of PAST, both in choosing to develop a

Shiny application and in choosing to use R and Bioconductor

to release the application. Users do not need to learn how to

compile programs in order to use PAST.

As with most types of analysis software, the results of PAST

are only as good as the input data; if the input data has errors

or is incorrectly formatted, PAST will fail to run or produce

uninformative results. Ensuring that the GWAS data, LD data,

annotations, and pathways files are correctly formatted is

critical to receiving correct output from PAST. PAST only

analyzes bi-allelic markers and can run only one trait for

each set of input data. In addition, GWAS data produced

by poor genotyping or incorrect or imprecise phenotyping is

not likely to produce clear or repeatable results either. PAST

can aid in the biological interpretation of GWAS results but is

unlikely to clarify chaotic data sets if environmental variation,
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experimental error, or population structure was not properly

accounted for.

Users can choose to change some parameters of the

analysis, both in the Shiny application and by passing those

parameters to PAST's functions in the R console. These

parameters can change the results reported by PAST, and

users should take care when modifying these from the

defaults. Because LD is measured by the users, typically

using the same marker data set that was also used in the

GWAS, the LD measurements are specific to the population.

For all studies, especially for species other than maize,

(particularly self-pollinating, polyploid, or highly heterogenous

species), changes in the defaults may be warranted.
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