16.10:
ARNi experimental
RNA interference (RNAi) is a cellular mechanism that inhibits gene expression by suppressing its transcription or activating the RNA degradation process. The mechanism was discovered by Andrew Fire and Craig Mello in 1998 in plants. Today, it is observed in almost all eukaryotes, including protozoa, flies, nematodes, insects, parasites, and mammals. This precise cellular mechanism of gene silencing has been developed into a technique that provides an efficient way to identify and determine the function of several genes without genetically modifying the organism.
RNAi helps in analyzing gene functions. For example, the RNAi technique helped screen chromosomes I and III of C.elegans and led to the identification of genes involved in cell division and embryonic development. This technology has also been successfully applied to Drosophila melanogaster to identify genes with essential roles in embryonic development, biochemical signaling cascades, and other fundamental cellular processes. In coffee plants, the gene responsible for producing theobromine synthase was knocked out using an RNA construct, producing decaffeinated coffee plants. Research shows that small interfering RNAs (siRNA) can inhibit infections caused by human immunodeficiency virus, hepatitis B virus, and poliovirus in cultured human cell lines. Researchers have also successfully knocked down genes expressed by the respiratory syncytial virus responsible for causing severe respiratory disease in infants and neonates.
Before discovering RNAi technology, gene function was analyzed by knocking out the gene of interest from the genome and observing the phenotypic changes. While gene knockout is an irreversible method, RNAi is a reversible method that provides large-scale silencing of protein-coding genes in a genome. Moreover, it is a precise technique that can differentially silence genes even with a single nucleotide variation. Therefore, it can help in targeting dominant mutants like some oncogenes. Moreover, the RNAi technique is highly potent as the effector molecules function at a low concentration compared to the oligonucleotides or ribozymes used in the old method.
El ARN de interferencia, o ARNi, es un proceso que las células utilizan para silenciar la expresión génica.
En este mecanismo, una enzima, Dicer, escinde el ARN de horquilla corta en ARN interferente corto, o siRNA, de aproximadamente veintidós pares de bases de longitud.
Este siRNA es recogido por un complejo enzimático llamado complejo de silenciamiento inducido por ARN, o RISC, y se convierte en ARN monocatenario durante el ensamblaje de riesgo en su ARNm objetivo.
El ARN monocatenario puede hibridarse con ARNm complementario. Una enzima del complejo RISC llamada Argonaute escinde el ARNm diana. La degradación del ARNm inhibe el proceso de traducción, lo que resulta en el silenciamiento de genes.
El ARN de interferencia ha sido utilizado por los investigadores para estudiar la función de varios genes, como el APC, un gen que se cree que está involucrado en el cáncer. Se construye un vector que codifica un ARN de horquilla corta que se dirige a una transcripción específica de ARNm.
Este vector se puede añadir a las células o a un organismo para silenciar un gen, y si se introduce en las células madre embrionarias de ratones, su secuencia se integrará en el genoma del huésped, produciendo ratones transgénicos.
Estos ratones producen ARN a partir de la secuencia insertada que se pliega en estructuras de horquilla. Estas estructuras son reconocidas por la maquinaria de ARNi en el citoplasma y se escinden en ARN bicatenario.
A continuación, el ARN se incorpora a RISC como un ARN monocatenario, que se une a la secuencia complementaria de una transcripción de ARNm diana, lo que da lugar a su degradación.
Los ratones con un gen APC inactivado desarrollan tumores en el colon con más frecuencia que los ratones de control con un gen APC funcional, lo que indica que es probable que la APC sea responsable de suprimir el crecimiento tumoral.
Related Videos
Analyzing Gene Expression and Function
4.4K Vistas
Analyzing Gene Expression and Function
4.9K Vistas
Analyzing Gene Expression and Function
1.8K Vistas
Analyzing Gene Expression and Function
4.9K Vistas
Analyzing Gene Expression and Function
15.0K Vistas
Analyzing Gene Expression and Function
11.8K Vistas
Analyzing Gene Expression and Function
4.0K Vistas
Analyzing Gene Expression and Function
2.3K Vistas
Analyzing Gene Expression and Function
15.3K Vistas
Analyzing Gene Expression and Function
6.1K Vistas
Analyzing Gene Expression and Function
11.3K Vistas
Analyzing Gene Expression and Function
9.3K Vistas
Analyzing Gene Expression and Function
11.1K Vistas
Analyzing Gene Expression and Function
4.7K Vistas
Analyzing Gene Expression and Function
3.5K Vistas
Analyzing Gene Expression and Function
7.2K Vistas
Analyzing Gene Expression and Function
3.6K Vistas
Analyzing Gene Expression and Function
5.0K Vistas
Analyzing Gene Expression and Function
13.3K Vistas