Dm ime4 mutant/TM3^{SB} X **Dm ime4 mutant/TM3**^{SB}

- 1/4 Homozygous
- 1/4 Dm ime4⁺/- Heterozygous (Stubble)
- 1/4 Dm ime4⁻/- Homozygous (Stubble)
- 1/4 Dm ime4⁻/- Homozygous (non-Stubble)

Adults: 1/3 expected to be Dm ime4⁻/- Homozygous.

E.g. out of 120 adults, 40 are expected to be homozygous Dm ime4 mutant.

But TM3^{SB}/TM3^{SB} homozygous balancer dies before adulthood.

The corrected ratios are 2/3 heterozygous, 1/3 homozygous Dm ime4 mutants.

Chi-square Goodness of Fit Test Formulas

Null Hypothesis

\[H_0 : \text{Observed} = \text{Expected} \]

Alternate Hypothesis

\[H_a : \text{Observed} = \text{Expected} \]

Test Statistic

\[\chi^2 = \sum \frac{(O - E)^2}{E} \]

\[df = (\# \text{ of categories}) - 1 \]

\[P - \text{Value} = \chi^2 \text{cdf}(\chi^2, 9999, df) \]

O is the observed count for each category and *E* is the expected count for each category.

The null and alternate hypotheses are always the same with a Goodness of Fit Test.

Instead of a normal or t distribution, we now have a chi-squared distribution.