- 1. Apply an initial load F_n at a random location x on the model
- 2. Read node coordinates: total displacement d and the reaction forces F_R at each node as a result of F_n
 - 3. Group these forces into two resultant force vectors: one in the same direction \mathbf{F}_{Ri} and one in the opposite direction \mathbf{F}_{Ro} of the original applied load
- 4. For each node, use cross product $r \times F$ to calculate the resulting moments from the reaction force F_R at that node about the point of original force application and sum the moments to determine M_i and M_o

NB.
$$\mathbf{\textit{M}}_{i} = \mathbf{\textit{r}}_{i} \times \mathbf{\textit{F}}_{Ri}$$
 and $\mathbf{\textit{M}}_{o} = \mathbf{\textit{r}}_{o} \times \mathbf{\textit{F}}_{Ro}$

5. Determine the effective locations of the two force vectors via \mathbf{r}_{i} and \mathbf{r}_{o} as

$$r_{\text{mag}} = |M|/|F| \text{ with } r = r_{\text{unit}} r_{\text{mag}}$$

The locations given as $\mathbf{x}_{i} = \mathbf{x} + \mathbf{r}_{i}$ and $\mathbf{x}_{o} = \mathbf{x} + \mathbf{r}_{o}$

6. Estimate the midpoint as a new location for force application F_{n+1} as $(x_i + x_0)/2$

