
1 Localization and tracking of single molecules (01. Tracking.ipynb)
1.1 Import and setup of required Python packages

Press Shift+Enter to execute the cell.

1.2 Description of datasets

1. Setting load = True will load data previously saved using the save() method in the at the end of
the notebook. Execute the cell (Shift+Enter) and go to any cell below to redo the analysis from
there. For the initial analysis, use load = False.

2. Point data_dir to the directory containing your raw data. When using backslashes on Windows to
separate folders, prefix the string with r, e.g. r"C:\path\to\data" to specify that the backslashes
are to be taken literally.

3. Create a Tracker instance named tr. The first argument to the constructor call is a string describing
the excitation sequence. Each letter corresponds to one frame. Use d for donor excitation, a for
acceptor excitation, and s for segmentation image. Any other letters can also be used for costum
frames, but are ignored by the analysis. + and * operators can be used to concatenate and repeat
sequence parts. For instance, "s + da * 300 + s" describes a sequence of one segmentation
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image excitation followed by 300 repeats of donor and acceptor alternating excitation, and another
segmentation image excitation in the end. The sequence is automatically repeated as necessary, so
"da" is equivalent to "dadadadada".

4. Add datasets using tr.add_dataset(…) (multiple times if needed). The first argument is a string
identifying the dataset. Choosing descriptive denomination is recommended, e.g. "condition1
no-cells". The second (and potentially third) argument is a regular expression pattern (see, for
instance, the documentation of Python’s standard library’s re module)1 matching the names of raw
data files which constitute the respective datasets. In regular expressions, a fullstop . serves as
a wildcard for any character, and an asterisk * matches zero or more of the preceding character.
Consequently, .* translates to “any number of any character.” A literal fullstop is matched by \..
The patterns should be relative to data_dir and using forward slashes / to separate folders, even
on Windows operating systems. For instance, to match all files which start with no-cells and
have extension tif in a subfolder named condition1, use "condition1/no-cells.*tif". In case
donor and acceptor emission were recorded to the same files, the pattern should match these files. If
they were written to separate files, the second argument describes the donor emission, and the third
describes the acceptor emission.

5. Similarly, add datasets used for calculating correction coefficients using tr.add_special_dataset(…).
Here, the dataset identifiers can be either "registration", "donor-profile", "acceptor-
profile", "donor-only", "acceptor-only", or "multi-state" for fiducial markers, donor or
acceptor emission using the densly labeled sample (can be the same files if the acceptor is
photobleached), donor-only single-molecule sample for leakage correction, acceptor-only sample for
cross-excitation correction, or a multi-state sample for excitation and detection efficiency correction.

6. Execute the cell.

1.3 Crop channels

Select the emission channels’ regions in the raw images. Only applicable if both donor and acceptor
emission were recorded side by side, skip otherwise.

1. The argument to tr.split_channels(…) should be a regular expression matching representative
files. For instance, to use the images of the fiducial markers, assuming they are TIFF files located in
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a subfolder name beads, use "beads/.*tif"
2. Execute the cell, which will bring up UI elements to select the channels’ regions in the image files.
3. Depending on the layout, press split horizontally or split vertically to split in the middle.
The donor channel is marked by an orange rectangle, the acceptor channel by a yellow one. If you
want to swap the channels, press the swap channels button

4. Fine-tuning can be achieved by manually entering the coordinates in the appropriate boxes or by
dragging the rectangles. Note that you can only change the rectangle of channel that is currently
selected via the tab bar on the top. For instance, to resize the acceptor rectangle, the acceptor tab
needs to be activate by pressing the respective button.

1.4 Set parameters for localization of fiducial markers for image registration

1. Execute tr.set_registration_loc_opts().
2. A widget will appear that allows for establishing the localization algorithm and parameters.
3. Browse images and adjust until satisfied with the outcome. Do so for both donor and acceptor
channels.
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1.5 Image registration

Executing tr.calc_registration() will first localize all fiducial markers, then calculate the transforma-
tion mapping the donor channel coordinates onto the acceptor channel coordinates and vice versa. When
finished, a plot is will show the result. In case this is not satisfactory, the algorithm can be tuned via
optional parameters. Please refer to the documentation supplied with the code for details.

1.6 Set parameters for localization of FRET probes
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1. Execute tr.set_loc_opts() to display a user interface that permits setting the localization algo-
rithm parameters for detecting the FRET probes.

2. The donor tab displays the sum of donor and acceptor emission upon donor excitation. This allows
for localizing the probes irrespectively of the FRET efficiency, since the total number of emitted
photons remains approximately constant.

3. The acceptor tab shows the acceptor emission upon acceptor excitation.
4. Set the localization parameters for each channel individually.

1.7 Localize FRET probes

Execute tr.locate() to localize all FRET signals. This can take some time, depending on the data
quality and available computing power.

1.8 Tracking

The following parameters for the tracking and fluorescence intensity measurement algorithms have to be
set:

1. feat_radius: Radius (in pixels) of a disk large enough to contain the whole point spread function.
This is used for measuring the fluorescence intensity—all pixels’ intensities within the disk are added
up and corrected for background—as well as for detecting whether point spread functions overlap,
i.e. their distance is less than 2 * feat_radius + 1, in which case the signal can be filtered out
later.

2. bg_frame: A ring of bg_frame pixels around the disk described by feat_radius is used for local
background determination. Pixels which are part of another probe’s point spread function are
automatically excluded.

3. link_radius: Maximally allowed distance for probe movement between consecutive frames in pixels.
If chosen too low, localizations may not be linked properly. If too large, the algorithm can fail due
to high complexity.

4. link_mem: Maximum gap size within a trajectory, i.e., number of consecutive frames where a signal
can be absent. Set at least to 1 to permit tracks to continue after one constituent of the FRET pair
has been bleached.

5. bg_estimator: A statistic to determine the local background from the pixel values selected via the
bg_frame. "mean" is recommended, "median" is also an option.

6. For further options, consult the documentation supplied with the code.

Execute the cell to perform tracking and to determine fluorescence intensities. This can take some time,
depending on the data quality and available computing power.

1.9 Extraction of auxiliary image data

1. tr.extract_segment_images() extracts images for segmentation (marked by the letter s in the
excitation sequence) from image sequences.
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2. tr.make_flatfield(…) determines the excitation light profiles across the field of view. Call once
with "donor" as the first argument and once with "acceptor" as the first argument to do the
computation for both channels. To compute the profile, the frame number selected via the frame
argument is loaded from each image in the donor-profile or acceptor-profile special dataset.
Subsequently, the pixel-by-pixel mean of these images is calculated, and the camera baseline given
by the bg parameter is subtracted. The result is smoothed using a Gaussian blur with a σ of
smooth_sigma pixels to smooth out sample impurities.

3. Execute the cell.

1.10 Save data

Executing tr.save() to save data to disk. This will create several files prefixed with tracking. To
change the prefix, e.g. if there are multiple datasets in the same folder, pass a corresponding string as a
parameter to tr.save(). Don’t forget to pass the same prefix to tr = Tracker.load() in cell number 2
if rerunning parts of the localization and tracking process. The generated .yaml file can be openend in a
text editor to inspect the parameters which were used. The .h5 files contain single-molecule localization
and tracking data. Contents may be loaded using the pandas Python library.

1.11 Inspection of data (optional)
Results can be inspected and modified at any point of the analysis. The tracker instance tr holds all
data. Single-molecule tracking results can be obtained via the tr.track_data attribute. See the code
documentation for information on the data structure.

2 Visualization of FRET trajectories (optional)

1. In an Anaconda prompt, execute

python -m smfret_analysis.inspector_gui

in the root directory. A new window will open, which may take a few seconds.
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2. Press the open button (top left) button and select the .yaml file which was created using the tracking
Jupyter notebook. Data will be loaded, which can take some seconds.

3. Top row dropdown menus permit selecting the track and frame number to display. Note that
numbers start at 0. Frame numbers only count donor excitation frames. The nearest acceptor
excitation frame is choosen automatically.

4. display options allow for choosing whether to display rejected tracks (see below), rejecting tracks
based on their length, enabling and disabling the display of localizations and tracks on top of the
raw images, and choosing whether to draw efficiency-vs.-stoichiometry scatter plots or time traces in
the bottom right diagram.

5. Under frame navigation it is possible to toggle whether or not to go automatically to the first
frame of a track after selecting it. The arrow buttons allow for navigating to the first and last frame
of the currently selected track.

6. Using the particle selection buttons it is possible to proceed to the next or previous track and
mark the current track either as manually selected or rejected.

7. If manual filtering was performed, use the save button (top left, second button) to save the selection.

8. Data can be exported to a spread sheet using the third button in the top-left corner. Note that this
can takes several tens of seconds. Meanwhile, the application appears to be frozen.

3 Analysis and filtering of single-molecule data (02. Analysis.ipynb)
3.1 Import and setup of required Python packages

Press Shift+Enter to execute the cell.

3.2 Print information about used software versions

Execute cell to print version of the FRET analysis software and underlying libraries.

3.3 Load data

Execute cell to create an Analyzer instance named ana. This loads the tracking data from save files
created by the tracking notebook. The Analyzer() call take can one optional argument: the file name
prefix. Pass whatever was passed to the save function in the tracking notebook.
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3.4 Choose datasets to visualize after each filtering step (optional)

Add the datasets’ names (as specified by the first argument to Tracker.add_dataset calls in the track-
ing notebook) to the plot_keys list, e.g. plot_keys = ["condition1 cells", "condition2 cells"].
Leave the list empty the disable plots, i.e., plot_keys = []. Execute cell to pop up a new panel in the
browser window which will be used for plotting. Note that plotting only works if the sidecar Python
package is installed and set up (see main text, protocol step 1.7).

3.5 Visualize unfiltered datasets (optional)

Execute cell to display apparent FRET efficiency vs. stoichiometry plots for the unfiltered datasets selected
above. Plots are drawn in the side panel created in the previous step. The plot type depends on which
function call is used:

• scatter(…) produces a scatter plot of all signals. Points are color-coded according to density in
E–S space.

• contour(…) creates a contour plot, depeciting discrete levels of point densities in E–S space.
• colormesh(…) displays continous color map of densities in E–S space.

For large sets this may take several seconds. If no datasets were selected for plotting, this does nothing.
All plotting functions take the plot title as an argument.
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3.6 Select region of adaquate excitation intensity (optional)

After execution of ana.find_beam_shape_thresh(), a widget will display the donor or acceptor excitation
light profile on the left panel. The right panel shows the regions with intensities above and below threshold
(in percent of the maximum intensity), where threshold can be set using the respective input field. This
serves to visualize the effect of the next filtering step.

3.7 Accept only adequately excited FRET probes (optional)

ana.filter_beam_shape_region(…) accepts, upon execution, only signals that are within the region of
sufficient excitation intensity to ensure an appropriate signal-to-noise ratio. The first argument specifies
the channel ("donor" or "acceptor"), the second argument the minimum intensity as a percentage of
the peak intensity. We typically filter based on donor excitation intensity and set a threshold of 45% to
50%. If plot_keys was set in step 3.4, the filtered data will be plotted.

3.8 Initial sanity checks (optional)

Execute the cell to perform the following:

• ana.query_particles("fret_has_neighbor == 0", min_rel=0.75) rejects all tracks that have
a near neighbor in more that 25% of their datapoints, as these tracks would contain too many
missing points.

• The call to ana.query("fret_has_neighbor == 0") removes datapoints with overlapping point
spread functions and thus erroneous values from the remaining tracks. This essentially creates gaps
in the trajectories, which are, however, gracefully handled in ensuing analysis steps.
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• With ana.present_at_start(), only tracks which are already present in the first donor excitation
frame are accepted to ensure that the full photobleaching sequence is captured. Note that this is
only applicable if smFRET complexes are already present when starting the imaging process.

If plot_keys was set in step 3.4, the filtered data will be plotted.

3.9 Flatfield correction

Correct for inhomogeneous excitation intensities by executing ana.flatfield_correction().

3.10 Calculate apparent FRET efficiencies and stoichiometries

Since acceptor excitation is performed after donor excitation, the acceptor emission upon exceptor excitation
at the time of the donor excitation needs to be interpolated, which is specified by a_mass_interp. If
a_mass_interp=next, the algorithm uses the next acceptor excitation frame. If a_mass_interp=linear,
it performs a linear interpolation. See the code documentation for other interpolation methods. Execute
the cell to calculate apparent FRET quantities.

3.11 Find changepoint detection parameters for analysis of bleaching steps

Analyze photobleaching steps in order to (a) identify monomeric probes and (b) accept only datapoints
before a photobleaching event in each track. Bleaching steps are found via a changepoint detection
alogrithm. Execute ana.find_changepoint_options() to display a widget that will allow you to select
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a track to display, set the penalty changepoint detection parameter individually for the total intensity
upon donor and acceptor excitation, and displays the respective time traces for the currently selected
track. We suggest first browsing through the tracks until one is found that features one or more bleaching
events. Subsequently adjust the penalty for the appropriate channel (total fluorescence intensity upon
donor excitation, total fluorescence intensity upon acceptor excitation) so that detected changepoints as
indicated by changing background color coincide with the bleaching events. To do so, first find the correct
order of magnitude of the penalty (i.e., append zeros to make changepoint detection less sensitive, remove
zeros to increase sensitivity), then fine-tune. Continue browsing time traces and refining the parameters
until satisfactory results are obtained.

3.12 Perform changepoint detection for analysis of bleaching steps

ana.mass_changepoints(…) performs changepoint detection on all time traces. It should be called once
for donor and once for acceptor excitation. Specify channel name as the first argument and pass the
respective penalty which was chosen in the previous stop. Execute the cell.

3.13 Filter tracks according to bleaching steps (optional)

Accept only tracks where there is no partial bleaching by executing ana.filter_bleach_step(…). Addi-
tional restrictions can be specified using the condition parameter:

• If condition="acceptor", the acceptor has to bleach in a single step before the donor.
• If condition="donor", the donor has to bleach in a single step before the acceptor.
• If condition="donor or acceptor", one of the fluorophores bleach in a single step.
• If condition="no partial", no additional requirements are enforced.

Use set_bleach_thresh(…) to specify the maximum intensity up to which a signal is considered bleached
in the donor (first argument) and acceptor (second argument) channel.

If plot_keys was set in step 3.4, the filtered data will be plotted in the side panel.
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3.14 Identify subpopulations for computation of FRET correction factors

Excitation and detection efficiency correction factors can be calculated from a sample with multiple discrete
states which manifest themselves via their FRET efficiencies, such as Holliday junctions. In this case, the
states have to be identified via a Gaussian mixture fit in the (apparent) efficiency-vs.-stoichiometry plot.
If the detection efficiency is calculated from bleaching events, the excitation efficiency can by determined
from a subpopulation featuring a 1 ∶ 1 donor-to-acceptor ratio, which also has to be identified via a
Gaussian mixture fit in the efficiency–vs.–stoichiometry plot. Execute ana.find_subpopulations() to
display a graphical interface which allows for setting the number of fit components as well as for identifying
the subpopulations in the 𝐸app–𝑆app plot to use for determination of correction factors.
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3.15 Compute FRET correction factors

Correction factors can be set or calculated in various ways.

• To set them directly, for instance because they have been determined in a separate experi-
ment, use ana.set_leakage(…), ana.set_direct_excitation(…), ana.set_detection_eff(…),
and ana.set_excitation_eff(…), and pass the respective value as the sole parameter.

• If a sample lacking acceptor fluorophores was recorded, ana.calc_leakage() can be used. The
corresponding donor-only sample had to be added before localization and tracking (see step 1.2).

• Leakage can also be calculated from regular samples’ datapoints where the acceptor has been
bleached by calling ana.calc_leakage_from_bleached(…).

• Direct excitation can be computed using ana.calc_direct_excitation() by analyzing an acceptor-
only sample (see also step 1.2) or via ana.calc_direct_excitation_from_bleached(…) by ana-
lyzing regular samples’ datapoints featuring photobleached donors.

• If probes in a dataset feature high FRET efficiencies which remain approximately constant over time,
acceptor bleaching can be analyzed to determine the correction factor for detection efficiencies using
ana.calc_detection_eff(…). This takes parameters min_part_length—the minimum number of
datapoints before and after a bleaching step to be analyzed—, how–a function that computes a final
factor from the individual tracks’ values, typically np.nanmedian or np.nanmean, and dataset—the
identifier of the dataset to use. Subsequently, a call to ana.calc_excitation_eff(…) determines
the excitation efficiency correction. As arguments, pass the dataset identifier, the number of
components (n_components) and the index of the component corresponding to the population with
a stoichiometry of 0.5 (component) as determined in the widget from the previous step.

• If there are no datasets that allow for calculation of the detection efficiency correction from acceptor
bleaching, a sample featuring multiple FRET efficiencies at stoichiometry 0.5 (such as isolated
Holliday junctions, which fluctuate between two states) can be used for determination of detection
and excitation efficiency corrections by means of the ana.calc_detection_excitation_effs(…)
call. As arguments, pass the number of components (n_components) and a list of component indices
to use for fitting (components) as determined in the widget from the previous step. If dataset is
not specified, the dataset specified via Tracker.add_special_dataset("multi-state, …) is used.

Choose whatever is appropriate in your case to set the four correction factors and execute the cell.
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3.16 Apply FRET correction factors

Execute ana.fret_correction() to accurately determine the FRET efficiency and stoichiometry for
each detected signal using the correction factors calculated in the previous step.

3.17 Select data before bleaching events

Execute the cell for final sanity checks: ana.query("fret_d_seg == 0 and fret_a_seg == 0 and
fret_exc_type == 'd'") only accepts signals upon donor excitation that appear before the first bleach-
ing event in each track. ana.query_particles("0.35 <= fret_stoi <= 0.6", min_rel=0.75) accepts
tracks where more than 75% of the datapoints have a stoichiometry between 0.35 and 0.6, which corresponds
to a 1 ∶ 1 donor-to-acceptor ratio (optional).

If plot_keys was set in step 3.4, the filtered data will be plotted in the side panel.

3.18 Find parameters for image segmentation (optional)

If images for image segmentation were recorded, a thresholding algorithm can be used to automatically
determine regions of interest. Execute ana.find_segmentation_options() to display a widget designed
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for finding the appropriate parameters. The tabs allow for choosing the algorithm. In our experience,
adaptive delivers the best results. Parameters for adaptive thresholding are the block size (block_size),
σ of a Gaussian filter for smoothing (smooth), a constant offset for thresholding (c), and the thresholding
method (method). The proper choice of parameter depends on the imaging conditions, e.g., how cells have
been labeled, whether TIRF was used, the excitation intensity which was applied, etc.

3.19 Filter data with results from image segmentation (optional)

To restrict certain datasets to datapoints from within regions identified by image segmentation, ex-
ecute the ana.apply_segmentation(…) call. Its first parameter is a list of datasets which should
be filtered, such as ["condition1 cells", "condition2 cells"] or more generically [k for k in
ana.analyzers if "no-cells" not in k] (all datasets whose names do not contain "no-cells"). The
second parameter specifies the algorithm to use, e.g. "adaptive". Subsequently, pass the parameters found
in the previous step, e.g. block_size=80, smooth=3, c=-2, method="mean" as additional arguments
to ana.apply_segmentation(…).

If plot_keys was set in step 3.4, the filtered data will be plotted in the side panel.

3.20 Save data

Save results by executing ana.save(). All remarks concerning saving data after tracking (see step 1.10)
apply here as well.

3.21 Inspection of data (optional)
Results can be inspected and modified at any point of the analysis. The Analyzer instance ana holds all
data in the ana.analyzers Python dictionary, which maps dataset names to sdt.fret.SmFRETAnalyzer
instances. See the sdt-python library documentation for details.

4 Plotting of results and further analysis (03. Plot.ipynb)
4.1 Import and setup of required Python packages

Press Shift+Enter to execute the cell.

4.2 Load data

Execute cell to create a Plotter instance named p This loads the tracking data from save files created by
the analysis notebook. The Plotter() call take can one optional argument: the file name prefix. Pass
whatever was passed to the save function in the analysis notebook.

15



4.3 Generate FRET efficiency-vs.-stoichiometry scatter plots

Execute p.scatter(…) to draw the plots plots. It is possible to pass xlim and ylim arguments which
set lower and upper limits of x and y axes, respectively. For instance, use xlim=(-0.5, 1.5). If not set,
limits are chosen to fit all datapoints. Axis labels can be set via xlabel and ylabel parameters.

The call returns the matplotlib figure instance and array of axes, which can be further manipulated. For
example, call fig.savefig("scatter.pdf") to save the plot to a file named scatter.pdf. p.scatter(…)
calls sdt.fret.smfret_scatter(…); see the documentation of the sdt-python library for additional
parameters and details.

4.4 Generate FRET efficiency histograms

Execute p.hist(…) to draw the histograms. Arguments described in conjunction with the p.scatter(…)
method can also be applied here. Furthermore it is possible to specify how to group datasets, i.e., put
multiple datasets into the same plot. For instance, this allows to directly compare experimental results
with the results from control experiments.

The group_re parameter consists of three entries: a regular expression with at least two groups, the
index of the group which is used to identify datasets which should be in the same plot, and the index
of the group which will be used to identify datasets within individual plots. Note that indices start
with 1 in this case. As an example, consider datasets are named "condition1 cells", "condition1
no-cells", "condition2 cells", and "condition2 no-cells". Then, group_re=[r"(condition.)
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(cells|no-cells)", 1, 2] will generate two plots, one for datasets starting with condition1 and one
for datasets starting with condition2, since index 1 (i.e., the group (condition.)) is specified to identify
datasets for different plots. Each plot will contain one cells and one no-cells histogram, since index 2
(i.e., the group (cells|no-cells)) is to be used for datasets within the plots.

The call returns the matplotlib figure instance and array of axes, which can be further manipulated. For
example, call fig.savefig("hist.pdf") to save the plot to a file named hist.pdf. p.hist(…) calls
sdt.fret.smfret_hist(…); see the documentation of the sdt-python library for additional parameters
and details.

4.5 Further analysis
p.track_data is a Python dictionary mapping dataset names to tables (pandas.DataFrames) containing
single-molecule data, one event per line. These can be exported to various file formats or further analyzed
in the Jupyter notebook using, for instance, functionality provided by the sdt-python library.

References
1. Python Software Foundation Re — regular expression operations. at <https://docs.python.org/3/

library/re.html> (2021).

17

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

	Localization and tracking of single molecules (01. Tracking.ipynb)
	Import and setup of required Python packages
	Description of datasets
	Crop channels
	Set parameters for localization of fiducial markers for image registration
	Image registration
	Set parameters for localization of FRET probes
	Localize FRET probes
	Tracking
	Extraction of auxiliary image data
	Save data
	Inspection of data (optional)

	Visualization of FRET trajectories (optional)
	Analysis and filtering of single-molecule data (02. Analysis.ipynb)
	Import and setup of required Python packages
	Print information about used software versions
	Load data
	Choose datasets to visualize after each filtering step (optional)
	Visualize unfiltered datasets (optional)
	Select region of adaquate excitation intensity (optional)
	Accept only adequately excited FRET probes (optional)
	Initial sanity checks (optional)
	Flatfield correction
	Calculate apparent FRET efficiencies and stoichiometries
	Find changepoint detection parameters for analysis of bleaching steps
	Perform changepoint detection for analysis of bleaching steps
	Filter tracks according to bleaching steps (optional)
	Identify subpopulations for computation of FRET correction factors
	Compute FRET correction factors
	Apply FRET correction factors
	Select data before bleaching events
	Find parameters for image segmentation (optional)
	Filter data with results from image segmentation (optional)
	Save data
	Inspection of data (optional)

	Plotting of results and further analysis (03. Plot.ipynb)
	Import and setup of required Python packages
	Load data
	Generate FRET efficiency-vs.-stoichiometry scatter plots
	Generate FRET efficiency histograms
	Further analysis

	References

