
Supplementary Document 2
Computational reconstruction of pancreatic islets as a tool
for structural and functional analysis

G. J. Félix-Martínez, A. Nicolás-Mata and J. R. Godínez-Fernández

Table of contents
1. Installing in Linux
2. Installing in Windows
3. Installing in macOS
4. CPU threads
5. Reconstructing an islet
6. Reconstruction log
7. Reconstruction results
8. Cell-to-cell contacts
9. Islet network

10. GPU blocks and threads
11. Configuring simulations
12. Simulation log
13. Simulation results

Installation
1. Installing IsletLab in Linux

1. Verify that the gcc compiler is installed. Open a Terminal and enter: gcc --version and
press Enter. If installed, the version of the gcc compiler must be displayed, otherwise, install
it by type the following commands (sudo privileges are needed):

Verify the installation by typing:

2. Verify that the nvcc compiler is installed. Open a Terminal and enter: nvcc --version and
press Enter. If installed, the version of the nvcc compiler must be displayed. Otherwise,
download the toolkit and follow the installation instructions. Once the installation is finished,
open a terminal and enter nvcc --version to verify the installation. (Note: If your computer
does not have a capable GPU, the nvcc compiler will not be available and you will not be able
to perform functional simulations in IsletLab. However, it will be still possible to reconstruct
islets).

3. Download and install Anaconda (Python 3.8 or 3.9)

sudo apt update

sudo apt install build-essential

gcc --version

af://n0
af://n2
af://n4
af://n33
af://n35
https://developer.nvidia.com/cuda-toolkit
https://www.anaconda.com/products/individual

4. Download the Application file or clone the Isletlab repository from
https://github.com/gjfelix/IsletLab. If you downloaded the repository as a zip file, extract the
files.

5. Open a Terminal in the base environment and go to the repository folder.

6. Create a new environment using the isletlabgui_v1.0.yml file. All the python modules
needed will be installed automatically.

7. Activate the new environment

8. Run Isletlab:

2. Installing IsletLab in Windows
Third-party compilers are required:

GCC (MinGW)
NVCC
MSVC (Cl.exe)

First open a Command Prompt and type the following commands: gcc --version , nvcc --

version and cl.exe . If any of these commands is not recognized by the system, follow the
corresponding steps below to install it and configure it before using IsletLab.

1. GCC. Download and install MinGW from https://sourceforge.net/projects/mingw/ (a GNU
Compiler Collection needed by IsletLab). Be sure to mark for installation the mingw32-base
and the mingw32-gcc-g++ packages from the Basic Setup list and the mingw32-pthreads-
w32 package (dev) from the All Packages list. Once selected, go to the Installation Menu
and select Apply Changes. Click the Apply button to finalize the installation.

conda env create -f isletlabgui_v1.0.yml

conda activate isletlab_v1.0

python isletlabgui_v1.0.py

https://github.com/gjfelix/IsletLab
af://n61
https://sourceforge.net/projects/mingw/

2. MSVC. Download and install the Build Tools for Visual Studio package. Be sure to select
Desktop development with C++ and click Install.

3. NVCC. Download and install the CUDA Toolkit.

Now, the paths to these compilers must be added to the Environment Variables:

4. Search for Environment Variables in the search bar and select Edit the system
environment variables.

Click the Environment Variables button.

https://visualstudio.microsoft.com/es/downloads/
https://developer.nvidia.com/cuda-downloads

Look for the Path variable in the System variables box and click Edit.

Click on an empty row and then click Browse. Go to the bin folder inside the MinGW folder
(installed usually in C:\MinGW\bin). Click OK.

Click Browse again and look for the cl.exe file, commonly located in the Visual Studio Folder
(for instance, C:\Program Files (x86)\Microsoft Visual
Studio\2022\BuildTools\VC\MSVC\14.3030705\bin\Hostx64\x64\cl.exe, although this path
could be different. In such case, look for the folder containing the cl.exe file). Click OK and
close the Environment Variables window.

Verify that the paths to the GPU Toolkit directories are listed (first to rows in the image
above). Otherwise, download and install the Toolkit (if a capable device is available in your
computer).

Note that these paths could vary depending on the version, installation path, operative
system version, etc.

4. Download and install Anaconda (Python 3.8 or 3.9 will work).

5. Reboot your computer.

6. Download the Application file or clone the IsletLab repository from
https://github.com/gjfelix/IsletLab. If you download the repository as a zip file, extract the
files.

7. Open the Navigator, select Environments from the left panel, click on the "Play" button
of the base (root) environment, and select Open Terminal to open a Command Prompt.

8. In the command prompt, go to the repository folder (where you extracted the IsletLab
repository files). There should be a file named isletlabgui_v1.0.yml.

9. Create a conda environment using the isletlabgui_v1.0.yml file. All the python modules
needed will be installed automatically.

conda env create -f isletlabgui_v1.0.yml

https://developer.nvidia.com/cuda-downloads
https://www.anaconda.com/products/individual
https://github.com/gjfelix/IsletLab

10. Close the Command Prompt and go back to the enviroments window. You should see the
environment called isletlab_v1.0 listed in the Environments tab (see the image below).
Launch the isletlab_v1.0 environment by clicking the Play button and selecting Open
Terminal.

11. In the Command Prompt, go to the IsletLab repository folder and run the application by
typing the following command:

Note: Functional simulations involve GPU computing which requires a capable GPU. plus the
driver and the Toolkit. Check if the NVCC compiler is installed by opening a Command Prompt and
typing nvcc --version . If the version of the NVCC compiler is not displayed, it is likely that the
Toolkit is not installed. If these requirements are not met, you still will be able to reconstruct and
analyze pancreatic islets (cell-to-cell contacts, network analysis).

3. Installing IsletLab in macOS
1. Download and install Anaconda.
2. Verify that the gcc-10 compiler is installed. Open a Terminal and enter: gcc-10 --version

and press Enter. If installed, the version of the gcc-10 compiler must be displayed,
otherwise, it must be installed as follows:

Install MacPorts (https://www.macports.org/install.php).
Open a Terminal and enter: sudo port install gcc10.
Verify the installation by entering gcc-10 --version in a Terminal.

3. Download the Application file or clone the Isletlab repository
(https://github.com/gjfelix/IsletLab). If you downloaded the repository as a zip file, extract the
files.

4. Open a Terminal in the base environment and go to the repository folder (where the
repository files were extracted).

5. Create a new environment using the isletlabgui_v1.0.yml file. All the python modules
needed will be installed automatically.

6. Activate the new environment. This step can be perform either typing the following
command in the Terminal:

7. Run Isletlab:

python isletlabgui_v1.0.py

conda env create -f isletlabgui_v1.0.yml

conda activate isletlab_v1.0

python isletlabgui_v1.0.py

https://developer.nvidia.com/cuda-gpus
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-downloads
af://n126
https://www.anaconda.com/products/individual
https://www.macports.org/install.php
https://github.com/gjfelix/IsletLab

Note: Due to hardware incompatibilities with Isletlab, it is currently not possible to perform
functional simulations in macOS.

4. CPU Threads
The number of threads available varies between computers depending on the characteristics of
the CPU. Broadly speaking, the number of threads is the number of parallel calculations that
IsletLab will use during the reconstruction process. It is really important to determine the
maximum number of threads available in order to reduce the computing time. Note that you will
need the number of threads available in your computer when performing an islet reconstruction.

In Windows, in the current version of IsletLab it is only possible to use a single CPU thread.
Therefore, the Threads parameter must be set to 1.
In Linux, open a Terminal and enter the lscpu command. Look for the number of CPU(s)
and the number of Thread(s) per core. Then calculate the total umber of threads by
multiplying the number of CPUs by the number of Thread(s) per core.
In macOS, run the following command in a Terminal in order to determine the number of
logical cores: sysctl hw.logicalcpu .

5. Reconstructing an islet
The reconstruction parameters needed for the protocol are related to the optimization algorithm
used to reconstruct the islets proposed by Félix-Martínez et al. (Félix-Martínez, Gerardo J., Aurelio
N. Mata, and J. Rafael Godínez-Fernández. "Reconstructing human pancreatic islet architectures
using computational optimization." Islets 12.6 (2020): 121-133.). The interested reader is referred
to the article for further details.

First, an input data file must be provided by the user. The input file must be composed of four
columns with the cell types in column 1, the spatial coordinates (X, Y, Z) in columns 2-4, and a
single row for each cell in the islet as in the example given below:

Based on the input file an initial islet is automatically proposed by assigning initial radii to the islet
cells (Islet initialization). Then, the number of overlapped cells in the initial islet is calculated .

Starting from the value of the Initial Temperature parameter defined by the user, the algorithm
proposes a new islet and calculate the new number of overlapped cells, accepting the new islet if
the number of overlapped cells is reduced, or either accepting it or rejecting it based on a
Temperature dependent probability (the probability of accepting an islet with a higher number of
overlapped cells decreases as the temperature decreases). The Temperature is reduced by half
and the process is repeated until a predefined stop criteria (Tolerance parameter) is met.

Follow this step-by-step guide to reconstruct an islet.

1. Determine how many CPU threads your computer have available.

2. Click the Reconstruction settings button and enter the number of CPU threads you want to
use in the Threads field.

11 172.22000 -144.21000 -1.00000
12 165.72000 -136.07000 -4.00000
13 155.32000 -144.21000 -4.00000
.
.
.

af://n155
af://n165
https://www.tandfonline.com/doi/full/10.1080/19382014.2020.1823178

3. Modify the reconstruction parameters (Initial temperature, Tolerance, Iterations and
Acceptance factors) if needed and click OK. It is worth remembering that the number of
new islet tested (i.e. iterations) for each value of the Temperature parameter is given either
by Acceptance factor * Number of cells or Iterations factor * Number of cells
(the one reached first). Once the iterations for a given Temperature value are completed, the
Temperature value is reduced by half and the process is repeated until a predefined
convergence criteria, defined by the Tolerance parameter, is reached.

4. Click the Load initial islet button and select your input file (If you don't have any data, you
can use the Input_test_file.txt file included in the Application File). Note that the input file
must be composed of four columns: 1. Cell type (coded as 11:α, 12: β, 13: δ); 2-4: nucleus
coordinates X, Y and Z, respectively. For instance, an input file of an islet composed of three
cells would look as follows:

When a valid input file is selected, A 3-D visualization of the initial islet must be shown in the
Initial Islet tab of the Plots panel and the number and percentages of the different cell
populations (α, β and δ) must be displayed in the Initial Islet tab of the Statistics panel.

5. Click the Reconstruct islet button. The Reconstruction Log should appear. Click the Run
button to start the reconstruction process and close the Reconstruction Log when
indicated. For details, see the following section. A 3D representation of the reconstructed
islet is then presented in the Final Islet tab or the Plots panel and the statistics related to
the reconstructed islets are shown in the Final Islet tab of the Statistics panel.

6. Reconstruction Log
The Reconstruction Log allows the user to monitor the islet reconstruction process.

12 172.22 -144.21 -1.00
11 165.72 -136.07 -4.00
13 155.32 -144.21 -4.00
.
.
.

af://n188

The first lines of the Reconstruction Log show the IsletLab version and gives the reference to the
paper where the details about the reconstruction algorithm can be consulted.

Then, the number of overlapped cells in the initial islet is given (the number to be minimized
during the optimization procedure).

Afterwards, the CPU threads to be used for the reconstructions are tested and initialized (2
threads used in this example).

Then, information about the reconstruction/optimization process is displayed.

First, the current value of the Temperature parameter (T) is given, along with the number of
overlapped cells (OC) for the current Temperature value. It is worth remembering that for each
Temperature value several iterations are performed (determined by the Iterations factor
parameter in the Reconstruction settings, see Section 5) . The minimal (min(OC)) and
maximum (max(OC)) values of the number of overlapped cells for the current Temperature value
are also shown. Finally, the total number of iterations performed (Total) as well as the number of
iterations accepted (Accepted) are given.

This information is displayed for each Temperature value until the convergence criteria is
reached. The process stops automatically and the total Computing time is shown.

IsletLab v.1.0

Pancreatic islet reconstruction based on the algorithm by
Felix-Martinez et al. DOI: 10.1080/19382014.2020.1823178

Overlapped cells in initial islet: 760.000000

Initializing thread: 0

Initializing thread: 1

T = 1.0000000000
Overlapped cells (OC) = 595.000000
[min(OC) max(OC)] = [594.000000 759.000000]
[Accepted Total] = [438 588]

T = 0.5000000000
Overlapped cells (OC) = 464.000000
[min(OC) max(OC)] = [464.000000 595.000000]
[Accepted Total] = [347 588]

.

.

.

T = 0.0000000009
Overlapped cells (OC) = 96.000000
[min(OC) max(OC)] = [96.000000 96.000000]
[Accepted Total] = [154 588]

Computing time: 76 seconds

https://www.tandfonline.com/doi/full/10.1080/19382014.2020.1823178

Note that the Initial Temperature, the total number of iterations per temperature value and the
maximum number of accepted iterations can be modified in the Reconstruction settings. See
the details in Section 5.

7. Reconstruction results
As a result of the islet reconstruction process, IsletLab provides the user with both basic graphical
visualizations as well as data files, which can be used to perform further analyses.

Firstly, the IsletLab window shows a 3D representation of the reconstructed islet (Final Islet tab in
the Plots panel), with α, β and δ-cells shown in red, green and blue, respectively. The data behind
this visualization is saved in the file "Filename_postprocessed.txt", named automatically after
the file containing the input data ("Filename.txt" in this example). This file contains the cells' radii
in column 1, a color value in column 2 (used to visualize the islet), the cells' type in column 3
(coded as 11: α, 12: β and 13: δ cells) and the X, Y and Z coordinates of each cell in columns 4-6. An
example of this structure is shown below.

Other files related to the reconstruction process are also generated and are briefly described
below (assuming that the name of the file containing the initial data is "Filename.txt"):

"Filename_reconstructed.txt".- This file has the same structure described above, although it also
contains the remaining overlapped cells removed during the postprocessing step.

"Filename_initial.txt".- This file has the same structure described above and contains the initial
islet generated. It is used to generate the corresponding 3D visualization.

"Filename_overlapped_cells.txt".- Contains the list of cells of the initial islet deleted during the
postprocessing step of the reconstruction.

"Filename_process_log.txt".- Contains the information showed to the user in the
Reconstruction Log.

Statistics related to the reconstructed islet are shown in the Statistics panel:

Please close this window to continue.

4.775805 0.400000 12.000000 172.220000 -144.210000 2.328237
5.274468 0.400000 12.000000 165.720000 -136.070000 -0.570117
.
.
.
4.658718 0.400000 12.000000 159.492397 -144.210000 -4.000000
4.547464 0.400000 12.000000 181.310000 -176.883972 -6.000000

af://n202
https://github.com/gjfelix/IsletLab/wiki/Reconstruction-Log

In addition to the number and percentages of the different types of cells, the cell volume is also
calculated. In the bottom part, the optimization stats are displayed, including:

% of experimental. Shows the percentage of the cells of the initial islet included in the
reconstructed islet.
Number of overlaps. Indicate the number of cells deleted from the islet during the
postprocessing step of the reconstruction algorithm.
Total iterations. Is the total number of iterations performed during the iterative
optimization procedure.
Accepted iterations. Indicate the number of iterations accepted during the reconstruction
process.
Computing time. Total computing time of the reconstruction.

Finally, the Convergence Plot, created in the Plots panel, reflects the evolution of the number of
overlapped cells during the reconstruction process. For instance, in the Convergence Plot shown
below, the initial islet included nearly 600 overlapped cells while at the end of the reconstruction
the reconstructed islet (before the postprocessing step) included ~100 overlapped cells.

This Convergence Plot is useful to determine if the Reconstruction settings must be modified
to improve the reconstruction results.

8. Cell-to-cell contacts results
Once an islet has been reconstructed, cell-to-cell contacts are identified by looking for neighbor
cells whose membranes are closer than the distance given by the user in the Reconstruction
settings panel via the Contact tolerance parameter. When the Cell-to-cell contacts button is
pressed, a graphical representation of the contacts is shown in the Contacts tab of the Plots
panel (see the image below) where only the centers of the α, β an δ cells (red, green and blue,
respectively) are shown, and the cell-to-cell contacts are indicated by black lines.

af://n229

The contacts statistics, that is, the number and percentages of the different contacts and type of
contacts, are also shown in the Statistics panel.

Note that homotypic contacts include all the contacts between cells of the same type (α-α, β-β, δ-
δ), while the heterotypic contacts include all the contacts between cells of different types (α-β, β-
δ, α-δ).

Several files related to the identification of Cell-to-cell contacts are created:
Filename_all_contacts.txt, Filename_aa_contacts.txt, Filename_ab_contacts.txt,
Filename_ad_contacts.txt, Filename_bb_contacts.txt, Filename_bd_contacts.txt,
Filename_dd_contacts.txt, Filename_bbbd_contacts.txt are the files where Adjacency

matrices are saved either for further analysis by the user or to perform Functional simulations
in IsletLab. All these files share the same structure. For instance, imagining an hypothetical islet
composed of 5 cells, the contacts data files would contain a 5 by 5 matrix as:

Each row and column of this matrices represent the contacts between all the cells in the islet. For
instance, cell 1 (row 1 or column 1) would be in contact with cell 2 and cell 5; cell 3 (row 3 or
column 3) would be in contact only with cell 2, etc. Note that the type of cells are obtained from
the files created during the reconstruction process.

9. Islet network results
When the islet network is generated from the cell-to-cell contacts, a 2D visualization of the
network is shown in the Network tab of the Plots panel where α, β and δ cells are shown in red,
blue and green, respectively.

An example of an islet network is shown below:

In addition to the network plot, related metrics described below are shown in the Statistics
panel:

0 1 0 0 1
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
1 0 0 1 0

af://n239

Average degree. It's the average number of links per node in the islet network. In this context,
each cell in the reconstructed islet is a node and a link is formed between cells in close contact.

Density. It is a measure of connectedness of the islet network calculated as the ratio of cell-to-cell
contacts to all the possible contacts.

Average clustering coefficient. It is a measure of interconnection of the cells' neighborhood.

Efficiency. It is a measure of global integration of the network.

Diameter. It's a measure of the network's size and it's given by the longest short path between all
the nodes in the islet network.

More details about the network metrics in the context of islet networks can be found in Félix-
Martínez, Gerardo J., and J. R. Godínez-Fernández. "Comparative analysis of reconstructed
architectures from mice and human islets." Islets 14.1 (2022): 23-35..

10. GPU blocks and threads
When performing functional simulations it is necessary and extremely important to know how
many cores the GPU has available. Determining the number of GPU blocks and threads is a
complex subject and directly related to the GPU hardware characteristics. In the following you will
find instructions to obtain the number of GPU Cores available.

In Windows, open the NVIDIA Control Panel, then click in System Information in the
bottom left corner and look for the number of cores (192 in the image below). It is a
complex topic to determine the number of blocks and threads, but you could assume that
each block has 32 threads (not ideal) and so determine the number of blocks by calculating
the number of blocks necessary to use the number of cores available. In the example shown
below, I would use 6 blocks and 32 threads (6 x 32 = 192).

https://www.tandfonline.com/doi/full/10.1080/19382014.2021.1987827
af://n252

In Linux, open the NVIDIA X Server Settings and select your GPU. Find the number of
Cores (192 in this case) and calculate the number of blocks and threads as described in the
instructions given above.

As previously mentioned, it is not yet possible to perform functional simulations in macOS.

NOTE: Ideally, the number of blocks and threads per block should be determined in accordance
with the characteristics of the GPU available. For instance, with a GPU with 2304 Cores, 36
Multiprocessors (MP) and 64 Cores per MP, a better selection of parameters would be 36 blocks
and 64 threads.

11. Configuring simulations
Functional simulations described in the protocol are implemented by adopting the methodology
proposed by Hoang et al. (Hoang, Danh-Tai, Manami Hara, and Junghyo Jo. "Design principles of
pancreatic islets: glucose-dependent coordination of hormone pulses." PloS one 11.4 (2016):
e0152446.), which treats each cell as an oscillator representing its pulsatile secretory activity. In
short, a system of differential equations given by:

is solved, where i represents each cell of the islet, j are the cells in contact with cell i, θi represents

the phase of iterator (cell) i, ωi is the intrinsic frequency of oscillator (cell) i, Kσiσj
 is the interaction

strength between cells i and j, and σi and σj indicate the corresponding type of cells (α, β, δ). In

summary, the phase of each cell of the islet is affected by the phase of the cells in contact with it
(i.e. j∈Λi), in accordance with the connectivity given by the reconstruction process.

In order to be solved, the user have to give the Initial phase (initial value), the Initial frequency,
and Interaction strengths in the Simulation tab of the configuration panel of IsletLab.

af://n267
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152446

When a Constant intrinsic frequency is selected, the same frequency is assigned to all the cells
in the islet. The value of the intrinsic frequency is assigned by clicking the Configure button.
When a Random intrinsic frequency is selected, frequencies drawn from a normal distribution
are assigned; thus, when the Configure button is pressed, the user can enter the mean and
standard deviation of the distribution of frequencies.

The interactions strengths can be defined by pressing the Configure interactions button.

These parameters in practice represent the extent of the influcence of a cell's phase to its
neighbor cells' phase. Details about these parameters can be found in the original article by
Hoang et al. (Hoang, Danh-Tai, Manami Hara, and Junghyo Jo. "Design principles of pancreatic
islets: glucose-dependent coordination of hormone pulses." PloS one 11.4 (2016): e0152446.)

Simulations are preformed using parallel computing through the GPU (graphical processing unit).
If a capable graphic card is not available, it will not be possible to perform functional simulations.
If a capable graphics card is available, the user needs to define the number of blocks and threads
(Nblocks and Nthreads in the settings section of the configuration panel of the Simulation tab,
see also the GPU blocks and threads section). Note that these parameters depend on the
hardware used by the user (see here for a list of capable devices).

12. Simulation Log
The Simulation Log (an excerpt is shown below) allows the user to monitor the initialization and
evolution of the functional simulations.

First, the islet is initialized by reading and configuring the connectivity properties according to the
cell-to-cell contacts previously identified. In the Simulation Log, this is shown as a list of three
columns, where each row corresponds to cell of the islets and the first column shows the Cell id,
the second column the Number of neighbors and the third column the the Neighbors' ID.

Once the simulations starts, the simulation time is printed in the Simulation Log until the Total
time determined by the user is reached. At the end of the Simulation Log the Computing time is
displayed.

IsletLab v1.0

Initializing islet connectivity:

Cell ID: 0 Neighbors: 1 Neighbors ID: 1
.
.
.
Cell ID: 203 Neighbors: 4 Neighbors ID: 204 236 331 462
.
.
.
Cell ID: 332 Neighbors: 3 Neighbors ID: 241 331 333
.
.
.
Cell ID: 494 Neighbors: 1 Neighbors ID: 340

Simulating:

t = 0.000000
t = 50.000000
t = 100.000000
.
.
.
t = 19900.000000

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152446
https://developer.nvidia.com/cuda-gpus
af://n279

13. Simulation results
Basic visualizations are given as a result of the functional simulations. In the top panel, the
summed oscillations of the whole islet (black line), β-cells (green line), α-cells (red line) and δ-cells
(blue line) are presented. In the bottom panel, the synchronization index that summarizes the
phase coherence of all the cells in the islet is shown. Two different examples are shown below.

First, a simulation performed with Constant initial frequency and Constant initial phase. Note
that all the cells are in phase, and therefore, the synchronization index is equal to 1 during the
whole simulation. This is because the interactions between the different type of cells depend on
the differences between their phases. Therefore, the synchronization index reflects the phase
coherence between all the cells of the islet, having a value of zero when the cells are completely
out of phase, and 1, when the cells are completely in phase.

Completely different results are obtained when the Intrinsic Frequency is set to Constant and
the Initial phase is set to random. In this case, since the initial phase of the cells is defined
randomly, and therefore, there is a different in phase between several islet cells, the
synchronization index shows a complex behavior, generated by both the phases differences and
the interactions between the cells.

t = 19950.000000
t = 20000.000000

Computing time: 21 seconds

Please close this window to continue.

af://n285

In addition to the graphical representations of the results, in the file File_kuramoto_angles.data
the phases of all the cells in the islets are saved.

	Supplementary Document 2
	Computational reconstruction of pancreatic islets as a tool for structural and functional analysis

	Table of contents
	Installation
	1. Installing IsletLab in Linux
	2. Installing IsletLab in Windows
	3. Installing IsletLab in macOS
	4. CPU Threads
	5. Reconstructing an islet
	6. Reconstruction Log
	7. Reconstruction results
	8. Cell-to-cell contacts results
	9. Islet network results
	10. GPU blocks and threads
	11. Configuring simulations
	12. Simulation Log
	13. Simulation results

