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Installation  
1. Installing IsletLab in Linux  

1. Verify that the gcc compiler is installed. Open a Terminal and enter: gcc --version  and 
press Enter. If installed, the version of the gcc compiler must be displayed, otherwise, install 
it by type the following commands (sudo privileges are needed): 

Verify the installation by typing:

2. Verify that the nvcc compiler is installed. Open a Terminal and enter: nvcc --version  and 
press Enter. If installed, the version of the nvcc compiler must be displayed. Otherwise,  
download the toolkit and follow the installation instructions. Once the installation is finished, 
open a terminal and enter nvcc --version  to verify the installation. (Note: If your computer 
does not have a capable GPU, the nvcc compiler will not be available and you will not be able 
to perform functional simulations in IsletLab. However, it will be still possible to reconstruct 
islets). 

3. Download and install Anaconda (Python 3.8 or 3.9)

sudo apt update 

sudo apt install build-essential

gcc --version

af://n0
af://n2
af://n4
af://n33
af://n35
https://developer.nvidia.com/cuda-toolkit
https://www.anaconda.com/products/individual


4. Download the Application file or clone the Isletlab repository from 
https://github.com/gjfelix/IsletLab. If you downloaded the repository as a zip file, extract the 
files.

5. Open a Terminal in the base environment and go to the repository folder.

6. Create a new environment using the isletlabgui_v1.0.yml file. All the python modules 
needed will be installed automatically.

7. Activate the new environment

8. Run Isletlab:

2. Installing IsletLab in Windows  
Third-party compilers are required:

GCC (MinGW)
NVCC
MSVC (Cl.exe)

First open a Command Prompt and type the following commands: gcc --version  , nvcc --

version  and cl.exe .  If any of these commands is not recognized by the system, follow the 
corresponding steps below to install it and configure it before using IsletLab.

1. GCC. Download and install MinGW from https://sourceforge.net/projects/mingw/ (a GNU 
Compiler Collection needed by IsletLab). Be sure to mark for installation the mingw32-base 
and the mingw32-gcc-g++ packages from the Basic Setup list and the mingw32-pthreads-
w32 package (dev) from the All Packages list. Once selected, go to the Installation Menu 
and select Apply Changes. Click the Apply button to finalize the installation. 

conda env create -f isletlabgui_v1.0.yml

conda activate isletlab_v1.0

python isletlabgui_v1.0.py

https://github.com/gjfelix/IsletLab
af://n61
https://sourceforge.net/projects/mingw/


2. MSVC.  Download and install the Build Tools for Visual Studio package. Be sure to select 
Desktop development with C++  and click Install.

3. NVCC.  Download and install the CUDA Toolkit.

Now, the paths to these compilers must be added to the Environment Variables:

4. Search for Environment Variables in the search bar and select Edit the system 
environment variables. 

Click the Environment Variables button. 

https://visualstudio.microsoft.com/es/downloads/
https://developer.nvidia.com/cuda-downloads


Look for the Path variable in the System variables box and click Edit.

Click on an empty row and then click Browse. Go to the bin folder inside the MinGW folder 
(installed usually in C:\MinGW\bin). Click OK.



Click Browse again and look for the cl.exe file, commonly located in the  Visual Studio Folder 
(for instance, C:\Program Files (x86)\Microsoft Visual 
Studio\2022\BuildTools\VC\MSVC\14.3030705\bin\Hostx64\x64\cl.exe, although this path 
could be different. In such case, look for the folder containing the cl.exe file). Click OK and 
close the Environment Variables window. 

Verify that the paths to the GPU Toolkit directories are listed (first to rows in the image 
above). Otherwise, download and install the Toolkit   (if a capable device is available in your 
computer).

Note that these paths could vary depending on the version, installation path, operative 
system version, etc.

4. Download and install Anaconda (Python 3.8 or 3.9 will work). 

5. Reboot your computer.

6. Download the Application file or clone the IsletLab repository from 
https://github.com/gjfelix/IsletLab. If you download the repository as a zip file, extract the 
files.

7. Open the Navigator, select Environments from the left panel, click on the "Play" button 
of the base (root) environment, and select Open Terminal to open a Command Prompt. 

8. In the command prompt, go to the repository folder (where you extracted the IsletLab 
repository files). There should be a file named isletlabgui_v1.0.yml.

9. Create a conda environment using the isletlabgui_v1.0.yml file. All the python modules 
needed will be installed automatically. 

conda env create -f isletlabgui_v1.0.yml

https://developer.nvidia.com/cuda-downloads
https://www.anaconda.com/products/individual
https://github.com/gjfelix/IsletLab


10. Close the Command Prompt and go back to the enviroments window. You should see the 
environment called isletlab_v1.0 listed in the Environments tab (see the image below). 
Launch the isletlab_v1.0 environment by clicking the Play button and selecting Open 
Terminal.

11. In the Command Prompt, go to the IsletLab repository folder and run the application by 
typing the following command:

Note: Functional simulations involve GPU computing which requires a capable GPU. plus the 
driver and the Toolkit. Check if the NVCC compiler is installed by opening a Command Prompt and 
typing nvcc --version . If the version of the NVCC compiler is not displayed, it is likely that the 
Toolkit is not installed. If these requirements are not met, you still will be able to reconstruct and 
analyze pancreatic islets (cell-to-cell contacts, network analysis).

3. Installing IsletLab in macOS  
1. Download and install Anaconda.
2. Verify that the gcc-10 compiler is installed. Open a Terminal and enter: gcc-10 --version  

and press Enter.  If installed, the version of the gcc-10 compiler must be displayed, 
otherwise, it must be installed as follows:

Install MacPorts (https://www.macports.org/install.php).
Open a Terminal and enter: sudo port install gcc10.
Verify the installation by entering gcc-10 --version  in a Terminal.

3. Download the Application file or clone the Isletlab repository 
(https://github.com/gjfelix/IsletLab). If you downloaded the repository as a zip file, extract the 
files.

4. Open a Terminal in the base environment and go to the repository folder (where the 
repository files were extracted).

5. Create a new environment using the isletlabgui_v1.0.yml file. All the python modules 
needed will be installed automatically.

6. Activate the new environment. This step can be perform either typing the following 
command in the Terminal:

7. Run Isletlab:

python isletlabgui_v1.0.py

conda env create -f isletlabgui_v1.0.yml

conda activate isletlab_v1.0

python isletlabgui_v1.0.py

https://developer.nvidia.com/cuda-gpus
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-downloads
af://n126
https://www.anaconda.com/products/individual
https://www.macports.org/install.php
https://github.com/gjfelix/IsletLab


Note:  Due to hardware incompatibilities with Isletlab, it is currently not possible to perform 
functional simulations in macOS. 

4. CPU Threads  
The number of threads available varies between computers depending on the characteristics of 
the CPU. Broadly speaking, the number of threads is the number of parallel calculations that 
IsletLab will use during the reconstruction process. It is really important to determine the 
maximum number of threads available in order to reduce the computing time. Note that you will 
need the number of threads available in your computer when performing an islet reconstruction.

In Windows, in the current version of IsletLab it is only possible to use a single CPU thread. 
Therefore, the Threads parameter must be set to 1.
In Linux, open a Terminal and enter the lscpu  command. Look for the number of CPU(s) 
and the number of Thread(s) per core. Then calculate the total umber of threads by 
multiplying the number of CPUs by the number of Thread(s) per core.
In macOS, run the following command in a Terminal in order to determine the number of 
logical cores: sysctl hw.logicalcpu .

5. Reconstructing an islet  
The reconstruction parameters needed for the protocol are related to the optimization algorithm 
used to reconstruct the islets proposed by Félix-Martínez et al. (Félix-Martínez, Gerardo J., Aurelio 
N. Mata, and J. Rafael Godínez-Fernández. "Reconstructing human pancreatic islet architectures 
using computational optimization." Islets 12.6 (2020): 121-133.). The interested reader is referred 
to the article for further details.

First, an input data file must be provided by the user. The input file must be composed of four 
columns with the cell types in column 1, the spatial coordinates (X, Y, Z) in columns 2-4, and a 
single row for each cell in the islet as in the example given below:

Based on the input file an initial islet is automatically proposed by assigning initial radii to the islet 
cells (Islet initialization). Then, the number of overlapped cells in the initial islet is calculated . 

Starting from the value of the Initial Temperature parameter defined by the user, the algorithm 
proposes a new islet and calculate the new number of overlapped cells, accepting the new islet if 
the number of overlapped cells is reduced, or either accepting it or rejecting it based on a 
Temperature dependent probability (the probability of accepting an islet with a higher number of 
overlapped cells decreases as the temperature decreases). The Temperature is reduced by half 
and the process is repeated until a predefined stop criteria (Tolerance parameter) is met. 

Follow this step-by-step guide to reconstruct an islet. 

1. Determine how many CPU threads your computer have available.

2. Click the Reconstruction settings button and enter the number of CPU threads you want to 
use in the Threads field.

11    172.22000   -144.21000     -1.00000
12    165.72000   -136.07000     -4.00000
13    155.32000   -144.21000     -4.00000
.
.
.

af://n155
af://n165
https://www.tandfonline.com/doi/full/10.1080/19382014.2020.1823178


3. Modify the reconstruction parameters (Initial temperature, Tolerance, Iterations and 
Acceptance factors) if needed and click OK. It is worth remembering that the number of 
new islet tested (i.e. iterations) for each value of the Temperature parameter is given either 
by Acceptance factor * Number of cells  or Iterations factor  * Number of cells  
(the one reached first). Once the iterations for a given Temperature value are completed, the 
Temperature value is reduced by half and the process is repeated until a predefined 
convergence criteria, defined by the Tolerance parameter, is reached.

4. Click the Load initial islet button and select your input file (If you don't have any data, you 
can use the Input_test_file.txt file included in the Application File). Note that the input file 
must be composed of four columns: 1. Cell type (coded as 11:α, 12: β, 13: δ); 2-4: nucleus 
coordinates X, Y and Z, respectively. For instance, an input file of an islet composed of three 
cells would look as follows:

When a valid input file is selected, A 3-D visualization of the initial islet must be shown in the 
Initial Islet tab of the Plots panel and the number and percentages of the different cell 
populations (α, β and δ) must be displayed in the Initial Islet tab of the Statistics panel.

5. Click the Reconstruct islet button. The Reconstruction Log should appear. Click the Run 
button to start the reconstruction process and close the Reconstruction Log when 
indicated. For details, see the following section. A 3D representation of the reconstructed 
islet is then presented in the Final Islet tab or the Plots panel and the statistics related to 
the reconstructed islets are shown in the Final Islet tab of the Statistics panel.

6. Reconstruction Log  
The Reconstruction Log allows the user to monitor the islet reconstruction process. 

12 172.22 -144.21 -1.00
11 165.72 -136.07 -4.00
13 155.32 -144.21 -4.00
.
.
.

af://n188


The first lines of the Reconstruction Log show the IsletLab version and gives the reference to the 
paper where the details about the reconstruction algorithm can be consulted.

Then, the number of overlapped cells in the initial islet is given (the number to be minimized 
during the optimization procedure).

Afterwards, the CPU threads to be used for the reconstructions are tested and initialized (2 
threads used in this example).

Then, information about the reconstruction/optimization process is displayed. 

First, the current value of the Temperature parameter (T) is given, along with the number of 
overlapped cells (OC) for the current Temperature value. It is worth remembering that for each 
Temperature value several iterations are performed (determined by the Iterations factor 
parameter in the Reconstruction settings, see  Section 5) . The minimal (min(OC)) and 
maximum (max(OC)) values of the number of overlapped cells for the current Temperature value 
are also shown. Finally, the total number of iterations performed (Total) as well as the number of 
iterations accepted (Accepted) are given. 

This information is displayed for each Temperature value until the convergence criteria is 
reached. The process stops automatically and the total Computing time is shown.

IsletLab v.1.0

Pancreatic islet reconstruction based on the algorithm by 
Felix-Martinez et al. DOI: 10.1080/19382014.2020.1823178

Overlapped cells in initial islet: 760.000000

Initializing thread: 0

Initializing thread: 1

T = 1.0000000000
Overlapped cells (OC) = 595.000000
[min(OC) max(OC)] = [594.000000 759.000000]
[Accepted Total] = [438 588]

T = 0.5000000000
Overlapped cells (OC) = 464.000000
[min(OC) max(OC)] = [464.000000 595.000000]
[Accepted Total] = [347 588]

.

.

.

T = 0.0000000009
Overlapped cells (OC) = 96.000000
[min(OC) max(OC)] = [96.000000 96.000000]
[Accepted Total] = [154 588]

Computing time: 76 seconds

https://www.tandfonline.com/doi/full/10.1080/19382014.2020.1823178


Note that the Initial Temperature, the total number of iterations per temperature value and the 
maximum number of accepted iterations can be modified in the Reconstruction settings. See 
the details in Section 5.

7. Reconstruction results  
As a result of the islet reconstruction process, IsletLab provides the user with both basic graphical 
visualizations as well as data files, which can be used to perform further analyses.

Firstly, the IsletLab window shows a 3D representation of the reconstructed islet (Final Islet tab in 
the Plots panel), with α, β and δ-cells shown in red, green and blue, respectively. The data behind 
this visualization is saved in the file "Filename_postprocessed.txt", named automatically after 
the file containing the input data ("Filename.txt" in this example). This file contains the cells' radii 
in column 1, a color value in column 2 (used to visualize the islet), the cells' type in column 3 
(coded as 11: α, 12: β and 13: δ cells) and the X, Y and Z coordinates of each cell in columns 4-6. An 
example of this structure is shown below.

Other files related to the reconstruction process are also generated and are briefly described 
below (assuming that the name of the file containing the initial data is "Filename.txt"):

"Filename_reconstructed.txt".- This file has the same structure described above, although it also 
contains the remaining overlapped cells removed during the postprocessing step.

"Filename_initial.txt".- This file has the same structure described above and contains the initial 
islet generated. It is used to generate the corresponding 3D visualization.

"Filename_overlapped_cells.txt".- Contains the list of cells of the initial islet deleted during the 
postprocessing step of the reconstruction. 

"Filename_process_log.txt".- Contains the information showed to the user in the 
Reconstruction Log.

Statistics related to the reconstructed islet are shown in the Statistics panel:

Please close this window to continue. 

4.775805    0.400000    12.000000   172.220000  -144.210000 2.328237    
5.274468    0.400000    12.000000   165.720000  -136.070000 -0.570117   
.
.
.
4.658718    0.400000    12.000000   159.492397  -144.210000 -4.000000   
4.547464    0.400000    12.000000   181.310000  -176.883972 -6.000000

af://n202
https://github.com/gjfelix/IsletLab/wiki/Reconstruction-Log


In addition to the number and percentages of the different types of cells, the cell volume is also 
calculated. In the bottom part, the optimization stats are displayed, including:

% of experimental. Shows the percentage of the cells of the initial islet included in the 
reconstructed islet. 
Number of overlaps. Indicate the number of cells deleted from the islet during the 
postprocessing step of the reconstruction algorithm.
Total iterations. Is the total number of iterations performed during the iterative 
optimization procedure.
Accepted iterations. Indicate the number of iterations accepted during the reconstruction 
process.
Computing time. Total computing time of the reconstruction.

Finally, the Convergence Plot, created in the Plots panel, reflects the evolution of the number of 
overlapped cells during the reconstruction process. For instance, in the Convergence Plot shown 
below, the initial islet included nearly 600 overlapped cells while at the end of the reconstruction 
the reconstructed islet (before the postprocessing step) included ~100 overlapped cells. 



This Convergence Plot is useful to determine if the Reconstruction settings must be modified 
to improve the reconstruction results.

8. Cell-to-cell contacts results  
Once an islet has been reconstructed, cell-to-cell contacts are identified by looking for neighbor 
cells whose membranes are closer than the distance given by the user in the Reconstruction 
settings panel via the Contact tolerance parameter. When the Cell-to-cell contacts button is 
pressed, a graphical representation of the contacts is shown in the Contacts tab of the Plots 
panel (see the image below) where only the centers of the α, β an δ cells (red, green and blue, 
respectively) are shown, and the cell-to-cell contacts are indicated by black lines.

af://n229


The contacts statistics, that is, the number and percentages of the different contacts and type of 
contacts, are also shown in the Statistics panel.

Note that homotypic contacts include all the contacts between cells of the same type (α-α, β-β, δ-
δ), while the heterotypic contacts include all the contacts between cells of different types (α-β, β-
δ, α-δ).

Several files related to the identification of Cell-to-cell contacts are created: 
Filename_all_contacts.txt, Filename_aa_contacts.txt, Filename_ab_contacts.txt, 
Filename_ad_contacts.txt, Filename_bb_contacts.txt, Filename_bd_contacts.txt, 
Filename_dd_contacts.txt, Filename_bbbd_contacts.txt are the files where Adjacency 



matrices are saved either for further analysis by the user or to perform Functional simulations 
in IsletLab. All these files share the same structure. For instance, imagining an hypothetical islet 
composed of 5 cells, the contacts data files would contain a 5 by 5 matrix as:

Each row and column of this matrices represent the contacts between all the cells in the islet. For 
instance, cell 1 (row 1 or column 1) would be in contact with cell 2 and cell 5; cell 3 (row 3 or 
column 3) would be in contact only with cell 2, etc. Note that the type of cells are obtained from 
the files created during the reconstruction process.

9. Islet network results  
When the islet network is generated from the cell-to-cell contacts, a 2D visualization of the 
network is shown in the Network tab of the Plots panel where  α, β and δ cells are shown in red, 
blue and green, respectively.

An example of an islet network is shown below:

In addition to the network plot, related metrics described below are shown in the Statistics 
panel:

0 1 0 0 1
1 0 1 1 0
0 1 0 0 0 
0 1 0 0 1
1 0 0 1 0 

af://n239


Average degree. It's the average number of links per node in the islet network. In this context, 
each cell in the reconstructed islet is a node and a link is formed between cells in close contact.

Density. It is a measure of connectedness of the islet network calculated as the ratio of cell-to-cell 
contacts to all the possible contacts.

Average clustering coefficient. It is a measure of interconnection of the cells' neighborhood.

Efficiency. It is a measure of global integration of the network.

Diameter. It's a measure of the network's size and it's given by the longest short path between all 
the nodes in the islet network.

More details about the network metrics in the context of islet networks can be found in Félix-
Martínez, Gerardo J., and J. R. Godínez-Fernández. "Comparative analysis of reconstructed 
architectures from mice and human islets." Islets 14.1 (2022): 23-35..

10. GPU blocks and threads  
When performing functional simulations it is necessary and extremely important to know how 
many cores the GPU has available. Determining the number of GPU blocks and threads is a 
complex subject and directly related to the GPU hardware characteristics. In the following you will 
find instructions to obtain the number of GPU Cores available.

In Windows, open the NVIDIA Control Panel, then click in System Information in the 
bottom left corner and look for the number of  cores (192 in the image below). It is a 
complex topic to determine the number of blocks and threads, but you could assume that 
each block has 32 threads (not ideal) and so determine the number of blocks by calculating 
the number of blocks necessary to use the number of  cores available. In the example shown 
below, I would use 6 blocks and 32 threads (6 x 32 = 192). 

https://www.tandfonline.com/doi/full/10.1080/19382014.2021.1987827
af://n252


In Linux, open the NVIDIA X Server Settings and  select your GPU. Find the number of 
Cores (192 in this case) and calculate the number of blocks and threads as described in the 
instructions given above.

As previously mentioned,  it is not yet possible to perform functional simulations in macOS.

NOTE: Ideally, the number of blocks and threads per block should be determined in accordance 
with the characteristics of the GPU available. For instance, with a GPU with 2304  Cores, 36 
Multiprocessors (MP) and 64 Cores per MP, a better selection of parameters would be 36 blocks 
and 64 threads.

11. Configuring simulations  
Functional simulations described in the protocol are implemented by adopting the methodology 
proposed by Hoang et al. (Hoang, Danh-Tai, Manami Hara, and Junghyo Jo. "Design principles of 
pancreatic islets: glucose-dependent coordination of hormone pulses." PloS one 11.4 (2016): 
e0152446.), which treats each cell as an oscillator representing its pulsatile secretory activity. In 
short, a system of differential equations given by: 

is solved, where i represents each cell of the islet, j are the cells in contact with cell i, θi represents 

the phase of iterator (cell) i, ωi is the intrinsic frequency of oscillator (cell) i, Kσiσj
 is the interaction 

strength between cells i and j, and σi and σj indicate the corresponding type of cells (α, β, δ). In 

summary, the phase of each cell of the islet is affected by the phase of the cells in contact with it 
(i.e. j∈Λi), in accordance with the connectivity given by the reconstruction process.

In order to be solved, the user have to give the Initial phase (initial value), the Initial frequency, 
and Interaction strengths in the Simulation tab of the configuration panel of IsletLab.

af://n267
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152446


  

When a Constant intrinsic frequency is selected, the same frequency is assigned to all the cells 
in the islet. The value of the intrinsic frequency is assigned by clicking the Configure button. 
When a Random intrinsic frequency is selected, frequencies drawn from a normal distribution 
are assigned; thus, when the Configure button is pressed, the user can enter the mean and 
standard deviation of the distribution of frequencies.

The interactions strengths can be defined by pressing the Configure interactions button.



These parameters in practice represent the extent of the influcence of a cell's phase to its 
neighbor cells' phase. Details about these parameters can be found in the original article by 
Hoang et al. (Hoang, Danh-Tai, Manami Hara, and Junghyo Jo. "Design principles of pancreatic 
islets: glucose-dependent coordination of hormone pulses." PloS one 11.4 (2016): e0152446.)

Simulations are preformed using parallel computing through the GPU (graphical processing unit). 
If a capable graphic card is not available, it will not be possible to perform functional simulations. 
If a capable graphics card is available, the user needs to define the number of blocks and threads 
(Nblocks and Nthreads in the settings section of the configuration panel of the Simulation tab, 
see also the GPU blocks and threads section). Note that these parameters depend on the 
hardware used by the user (see here for a list of capable devices ).

12. Simulation Log  
The Simulation Log (an excerpt is shown below) allows the user to monitor the initialization and 
evolution of the functional simulations.

First, the islet is initialized by reading and configuring the connectivity properties according to the 
cell-to-cell contacts previously identified. In the Simulation Log, this is shown as a list of three 
columns, where each row corresponds to cell of the islets and the first column shows the Cell id, 
the second column the Number of neighbors and the third column the the Neighbors' ID.

Once the simulations starts, the simulation time is printed in the Simulation Log until the Total 
time determined by the user is reached. At the end of the Simulation Log the Computing time is 
displayed.

IsletLab v1.0

Initializing islet connectivity: 

Cell ID: 0    Neighbors: 1   Neighbors ID: 1 
.
.
.
Cell ID: 203      Neighbors: 4   Neighbors ID: 204 236 331 462 
.
.
.
Cell ID: 332      Neighbors: 3   Neighbors ID: 241 331 333 
.
.
.
Cell ID: 494      Neighbors: 1   Neighbors ID: 340 

Simulating:

t = 0.000000
t = 50.000000
t = 100.000000
.
.
.
t = 19900.000000

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152446
https://developer.nvidia.com/cuda-gpus
af://n279


13. Simulation results  
Basic visualizations are given as a result of the functional simulations. In the top panel, the 
summed oscillations of the whole islet (black line), β-cells (green line), α-cells (red line) and δ-cells 
(blue line) are presented. In the bottom panel, the synchronization index that summarizes the 
phase coherence of all the cells in the islet is shown. Two different examples are shown below. 

First, a simulation performed with Constant initial frequency and Constant initial phase. Note 
that all the cells are in phase, and therefore, the synchronization index is equal to 1 during the 
whole simulation. This is because the interactions between the different type of cells depend on 
the differences between their phases. Therefore, the synchronization index reflects the phase 
coherence between all the cells of the islet, having a value of zero when the cells are completely 
out of phase, and 1, when the cells are completely in phase.

Completely different results are obtained when the Intrinsic Frequency is set to Constant and 
the Initial phase is set to random. In this case, since the initial phase of the cells is defined 
randomly, and therefore, there is a different in phase between several islet cells, the 
synchronization index shows a complex behavior, generated by both the phases differences and 
the interactions between the cells.

t = 19950.000000
t = 20000.000000

Computing time: 21 seconds

Please close this window to continue.

af://n285


In addition to the graphical representations of the results, in the file File_kuramoto_angles.data 
the phases of all the cells in the islets are saved.
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