Recipes for in vitro kinetics experiment

10x Transcription Buffer

4 mL of 1 M Tris–HCl, pH 8.0 (final concentration = 400 mM) 4 mL of 1 M MgCl₂ (final concentration = 400 mM) 1 mL of 1 M DTT (final concentration = 100 mM) 400 μ L of 500 mM Spermidine (final concentration = 20 mM)

Add water to 10 mL, filter to sterilize, and store at -20 °C.

Crush soak buffer

10 mL of 1 M Tris–HCl, pH 7.5 (final concentration = 10 mM) 40 mL of 5 M NaCl (final concentration = 200 mM) 2 mL of 0.5 M EDTA, pH 8.0 (final concentration = 1 mM) ddH₂O to 1 L

10x Tris-Borate-EDTA (TBE) buffer

108.99 g of Tris (final concentration = 900 mM) 55.64 g of Boric acid (final concentration = 900 mM) 20 mL of 0.5 M EDTA, pH 8.0 (final concentration = 10 mM)

Adjust pH to 8.3, and add ddH_2O to 1 L.

2x Urea gel loading buffer (ULB)

2 g of sucrose (final concentration = 20%) 100 μL of 10% SDS (final concentration = 0.1%) 1 mL of 10x TBE (final concentration = 1x) 11 g of Urea (final concentration = ~18 M)

Add water to 10 mL, stir for 2 h at room temperature, decant the solution from any undissolved urea, filter to sterilize, and store at 4 °C.

2x Urea gel loading buffer (ULB) with tracker dyes

2 g of sucrose (final concentration = 20%) 5 mg of Bromophenol Blue (final concentration = 0.05%) 5 mg of Xylene cyanol (final concentration = 0.05%) 100 μ L of 10% SDS (final concentration = 0.1%) 1 mL of 10x TBE (final concentration = 1x) 11 g of Urea (final concentration = ~18 M)

Add water to 10 mL, stir for 2 h at room temperature, decant the solution from any undissolved urea, filter to sterilize, and store at 4 °C.

1x Tris–EDTA (TE) buffer

100 μ L of 1 M Tris–HCl, pH 7.5 (final concentration = 10 mM) 20 μ L of 0.5 M EDTA, pH 8.0 (final concentration = 1 mM)

Add water to 10 mL, sterile filter, and store at room temperature.

Inorganic pyrophosphatase solution

100 μ L of 50% Glycerol (final concentration = 25%) 10 μ L of 1 M HEPES–KOH, pH 7.5 (final concentration = 50 mM) 0.5 μ L of 200 mM DTT (final concentration = 0.5 mM) 100 U of Inorganic pyrophosphatase (final concentration= 0.5 U/ μ L) 89.5 μ L of sterile ddH₂O

10x Sodium carbonate buffer

 $0.53 \text{ g of } Na_2CO_3 \text{ (final concentration = 500 mM) } 200 \ \mu\text{L of } 0.5 \text{ M EDTA (final concentration = 10 mM)}$

Adjust pH to 7.0, add water to 10 mL, sterile filter, and store at -20 °C.

2x Renaturing buffer

800 μ L of 1 M HEPES–KOH, pH 7.5 (final concentration = 80 mM) 60 μ L of 1 M MgCl2 (final concentration = 6 mM) 1.25 mL of 2M KCl (final concentration = 250 mM)

DFHBI Stock

1 mg of DFHBI (final concentration= 20 mM)198 μL of DMSO

Aliquot into amber tubes and store at -20 °C until used. Avoid repeated freeze-thaw cycles by usingone stock at a time and storing it at room temperature in the dark.

Recipes for in vivo kinetics experiment

DFHBI-1T Stock

5 mg of DFHBI-1T (final concentration = 50 mM) 312.3 μL of DMSO

Aliquot into amber tubes, and store at -20 °C until used. Avoid repeated freeze-thaw cycles by using one stock at a time and storing it at room temperature in the dark.

Noninducing Media (NI), 200 mL media

~ 186 mL of Sterile ddH₂O

After autoclaving, add the following sterile filtered components:

200 μL of 1 M MgSO₄ 2.5 mL of 40% Glucose 10 mL of 20x NPS

ZYP-5052 autoinduction media (AI), 200 mL media

ZY Media

2 g of Tryptone 1 g of Yeast Extract ~ 186 mL of Sterile ddH₂O

After autoclaving, add the following sterile filtered components:

200 μL of 1 M MgSO₄ 4 mL of 50x 5052 10 mL of 20x NPS

1 M MgSO₄ solution, 50 mL

6 g of MgSO₄ 50 mL of ddH₂O

Add water to MgSO₄, and stir until fully dissolved. Sterile filter solution afterward before use.

40% Glucose, 100 mL

40 g of D-Glucose 100 mL of ddH₂O

Weigh out 40 g of glucose and add 70 mL of ddH_2O . Dissolve by stirring. May use some heat to assist with dissolving. Once the sugar has dissolved, bring the volume up to 100 mL total. Autoclave solution before use.

20x NPS, 100 mL

90 mL of Sterile ddH2O 6.6 g of (NH₄)₂ SO₄ (final concentration = 0.5 M) 13.6 g of KH₂PO₄ (final concentration = 1 M) 14.2 g of Na₂HPO₄ (final concentration = 1 M)

Add in sequence into a breaker, stir until dissolved. pH of 20-fold dilution in water ~6.75. Autoclave solution before use.

50x 5052, 100 mL

25 g of Glycerol (weigh in beaker)
73 mL of Sterile ddH₂O
2.5 g of Glucose
10 g of α-lactose

Add in sequence in a beaker, and stir until dissolved. Can speed by heating in a microwave. Once dissolved, the solution is sterile filtered.