Messinger, J. D., Brinkmann, M., Kimble, J. A., Berlin, A. Freund, K, Grossman, G. H., Ach, T., Curcio, C. A. *Ex vivo* OCT-based multimodal imaging of human donor eyes for research in age-related macular degeneration.

Supplemental Material 1

- This guide provides an overview for *ex vivo* imaging of the ocular fundus in human donor eyes, using clinical devices for optical coherence tomography (OCT) and multimodal imaging (MMI)
- Methods were used in these representative previous publications:
 - Litts, K. M., Messinger, J. D., Dellatorre, K., Yannuzzi, L. A., Freund, K. B., Curcio, C. A., 2015. Clinicopathological correlation of outer retinal tubulation in age-related macular degeneration. JAMA Ophthalmol 133, 609-612. PMID 25742505
 - Tan, A. C., Pilgrim, M., Fearn, S., Bertazzo, S., Tsolaki, E., Morrell, A., Li, M., Messinger, J. D., Dolz-Marco, R., Nittala, M. G., Lei, J., Sadda, S. R., Lengyel, I., Freund, K. B., Curcio, C. A., 2018. Calcified nodules in retinal drusen are associated with disease progression with age-related macular degeneration. Sci Transl Med 10, 466-477. PMID 30404862
 - Anderson, D. M. G., Messinger, J. D., Patterson, N. H., Rivera, E. S., Kotnala, A., Spraggins, J. M., Caprioli, R. M., Curcio, C. A., Schey, K. L., 2020. The molecular landscape of the human retina and supporting tissues by high resolution imaging mass spectrometry. J Am Soc Mass Spectrom 31, 2426-2436. PMID 32628476
 - Cao, D., Leong, B., Messinger, J. D., Kar, D., Ach, T., Yannuzzi, L. A., Freund, K. B., Curcio, C. A., 2021. Hyperreflective foci, OCT progression indicators in age-related macular degeneration, include transdifferentiated retinal pigment epithelium. Invest Ophthalmol Vis Sci 62, 34. PMID 34448806

See also users' guide from the manufacturers of your camera and OCT device

Retrieving of donor eyes by The Eye Bank

- Excellent tissue quality is the first step of impactful discovery. To achieve this goal, our local Eye Bank has continuously optimized a comprehensive recovery process:
 - Minimizing death-to-preservation (d-to-p) time is key. Our research criterion d-top is \leq 6 hours. In 2016-17 our mean d-to-p time was 3.9 hours.
 - Call center enhancements have led to death referrals received in \leq 1 hour.
 - Donor Risk Assessment Interview asks AMD-, and glaucoma-specific questions.
 - Recovery is usually done in the hospital room, with preservation medium at hand.
 - Eyes are opened by consistent handling methods.
 - Eye bank staff communicates with investigators on timing, protocol, and delivery.

Corneal excision from a human donor eye for immersion fixation of retina , by the eye bank Top left, excised donor eye is held in place by a sheath of gauze stabilized by a hemostat; top middle, 18 mm trephine is used to make a clean score of the cornea with a 2 mm rim of sclera; top right, the scored circle is finished by a cut with spring-loaded curved tipped scissors, while stabilizing the globe with the hemostatclipped gauze; bottom left, the cornea is lifted off the sclera, exposing the iris (blue) and ciliary body (tanbrown); bottom middle, the cornea is lifted completely and handled independently; bottom right, iris is snipped perpendicular to the pupillary margin to facilitate penetration of the preservation into the vitreous chamber.

Supplemental material for: Messinger, J. D., Brinkmann, M., Kimble, J. A., Berlin, A. Grossman, G. H., Ach, T., Curcio, C. A. *Ex vivo* OCT-based multimodal imaging of human donor eyes for research in age-related macular degeneration.

Tissue recovery

- Globes are recovered on-site, scored with an 18-mm trephine to facilitate corneal removal with scissors, and immersed in cold buffered 4% paraformaldehyde.
- They are held in cold fixative until delivered to the laboratory

Next steps (slides 6 - 8)

- The eyes are then fully opened to allow MMI (Figure 1).
- Liquified vitreous is discarded.
- The vitreous base and vitreous attached to it is retained to ensure adherence of the retina to the choroid and sclera. Pulling on the vitreous may detach the retina
- Superior pole of eye is marked with tissue marking dye.

Laboratory: Eye is stabilized for dissection on dental wax previously indented with a 25mm heated ball bearing

Laboratory: eye under dissecting microscope

Color fundus photography

- Eyes are placed in a quartz crucible filled with buffer.
- And placed under a camera for fundus pictures.
- Pictures are taken with different light sources (epi-, flash- and transillumination).

Trans-illumination

Flash-illumination

Epi-illumination

0.75X fundus

1.50X posterior pole

3.00X macula lutea, fovea

OCT

- Each eye is placed in a custom-made closedchamber eye holder with a 60-diopter lens.
- It is filled with buffer and attached to the headrest of the OCT device, so that the eye "looks in" as would a patient.

Spacers

0

Spacers

Holder

Which images are taken with the OCT device?

- Near-infrared reflectance scanning laser ophthalmoscopy
- Red-free reflectance scanning laser ophthalmoscopy
- 488 nm fundus autofluorescence
- 787 nm fundus autofluorescence
- Spectral domain OCT volume

Also shown in Figure 2 of Messinger et al

Capture mode for OCT

- Averaging rate = 50 frames
- Scan size = 30° x 25°
- *#* of sections = 241
- Distance between sections
 = 30 µm

Quality: 2		
Application & Structure	Preset	
Retina	ART 1 Fast Dense Detail	Scan
Follow-Up		✓ 0 * Ξ
		ART 50 frames - 0.0°
		 ✓ ✓
		▼ 30 μm ▼ 768 A-scans

Video showing OCT B-scans of a healthy right donor eye

Details in Figure 2 of Messinger et al