
Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 1 of 22

Integration of 5G Experimentation Infrastructures into a
Multi-Site NFV Ecosystem
Borja Nogales*,1, Luis F. Gonzalez*,1, Ivan Vidal*,1, Francisco Valera*,1, Jaime Garcia-Reinoso*,1, Diego R. Lopez*,2, Juan
 Rodríguez*,2, Neftali Gonzalez*,3, Ignacio Berberana*,3, Arturo Azcorra*,1,3

1 Department of Telematic Engineering, Universidad Carlos III de Madrid 2 Telefónica I+D 3 IMDEA Networks Institute
*These authors contributed equally

Corresponding Author

Borja Nogales

bdorado@pa.uc3m.es

Citation

Nogales, B., Gonzalez, L.F., Vidal, I.,

Valera, F., Garcia-Reinoso, J.,

Lopez, D.R., Rodríguez, J.,

Gonzalez, N., Berberana, I.,

Azcorra, A. Integration of 5G

Experimentation Infrastructures into

a Multi-Site NFV Ecosystem. J. Vis.

Exp. (168), e61946, doi:10.3791/61946

(2021).

Date Published

February 3, 2021

DOI

10.3791/61946

URL

jove.com/video/61946

Abstract

Network Function Virtualization (NFV) has been regarded as one of the key enablers

for the 5th Generation of mobile networks, or 5G. This paradigm allows to reduce

the dependence on specialized hardware to deploy telecommunications and vertical

services. To this purpose, it relies on virtualization techniques to softwarize network

functions, simplifying their development and reducing deployment time and costs.

In this context, Universidad Carlos III de Madrid, Telefónica, and IMDEA Networks

Institute have developed an NFV ecosystem inside 5TONIC, an open network

innovation center focused on 5G technologies, enabling the creation of complex, close

to reality experimentation scenarios across a distributed set of NFV infrastructures,

which can be made available by stakeholders at different geographic locations.

This article presents the protocol that has been defined to incorporate new remote

NFV sites into the multi-site NFV ecosystem based on 5TONIC, describing the

requirements for both the existing and the newly incorporated infrastructures, their

connectivity through an overlay network architecture, and the steps necessary for

the inclusion of new sites. The protocol is exemplified through the incorporation of

an external site to the 5TONIC NFV ecosystem. Afterwards, the protocol details the

verification steps required to validate a successful site integration. These include the

deployment of a multi-site vertical service using a remote NFV infrastructure with Small

Unmanned Aerial Vehicles (SUAVs). This serves to showcase the potential of the

protocol to enable distributed experimentation scenarios.

Introduction

The introduction of the fifth generation of mobile networks

(5G) has implied revolutionizing the telecommunications

industry since the beginning of the decade, requiring

telecommunication operators to address the much more

demanding specifications of the new networking services and

applications developed under the 5G umbrella1,2 . These

https://www.jove.com
https://www.jove.com/
https://www.jove.com/author/Borja_Nogales
https://www.jove.com/author/Luis%20F._Gonzalez
https://www.jove.com/author/Ivan_Vidal
https://www.jove.com/author/Francisco_Valera
https://www.jove.com/author/Jaime_Garcia-Reinoso
https://www.jove.com/author/Diego%20R._Lopez
https://www.jove.com/author/Juan_Rodr%C3%ADguez
https://www.jove.com/author/Juan_Rodr%C3%ADguez
https://www.jove.com/author/Neftali_Gonzalez
https://www.jove.com/author/Ignacio_Berberana
https://www.jove.com/author/Arturo_Azcorra
http://dx.doi.org/10.3791/61946
https://www.jove.com/video/61946

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 2 of 22

new specifications include, but are not limited to, data

rate increases, wireless transmission latency improvements,

and operational costs reduction. Among the technologies

that constitute the foundations of the improvements for this

new generation, Network Functions Virtualization3 (NFV)

has become one of its key enablers. NFV provides the

capacity to softwarize network functions, traditionally relaying

on specialized hardware, by using generic-purpose physical

equipment instead, such as server computers in a datacenter.

With this new paradigm, telecommunication operators and

vertical industries can deploy network functions and services

as a set of software components, and save costs in both

service deployment and maintenance, as well as facilitating a

much higher network infrastructure elasticity. This approach

alleviates or eliminates the necessity to use dedicated (and

usually more complex and less reusable) devices for most

network and vertical-specific functions, and supports a much

higher and denser degree of operational automation, hence

reducing deployment and maintenance costs.

Taking into consideration all the advantages that an NFV

environment is able to provide, it is natural that a great number

of relevant stakeholders from the telecommunications sector

have increasingly been involved in testing new service ideas

on NFV environments. In this context, Telefónica and IMDEA

Networks Institute have created 5TONIC4 , an open research

and innovation laboratory focused on 5G technologies. Based

in Madrid (Spain), this laboratory has a wide range of

technologies available for researches and partners to boost

the development and validation of 5G services. In particular,

this laboratory has an experimental NFV platform where

developers are able to deploy and test their new NFV-based

applications and services over on an ETSI-compliant NFV

ecosystem5 . Thus, experimental conclusions about design

choices and technology proposals can be derived in a realistic

much more flexible environment than production networks.

This platform has been designed to support experimentation

activities across multiple external sites, which may be flexibly

interconnected to 5TONIC using a well-defined protocol.

The technical solution adopted for the 5TONIC NFV

ecosystem considers the utilization of a single NFV

orchestrator, implemented using the ETSI-hosted Open

Source MANO (OSM) software6 . This is the element in

charge of managing and coordinating the lifecycle of Network

Services (NS). These services may be built as a composition

of Virtualized Network/Vertical Functions (VNF), which can

be deployed at any of the sites integrated on the NFV

platform. The design of the 5TONIC NFV ecosystem has

been done in the context of the H2020 5GINFIRE project7,8 ,

where the platform was used to support the execution of

more than 25 experiments, selected through a competitive

open-call process, across eight vertical-specific experimental

infrastructures located in Europe and one in Brazil, the

latter connected through a transoceanic link. In addition, the

platform was leveraged to build a distributed NFV testbed at a

national scale, in Spain, supporting experimentation activities

within the Spanish 5GCity project9,10 . More recently, an

additional Brazilian site has been integrated into the platform,

to support joint demonstration activities in the context of a

research and innovation cooperation established between

Brazil and Europe (i.e., the 5GRANGE project11,12). Last but

not least, the infrastructure has been used to support third-

party experiments in the scope of the 5G-VINNI project13,14 .

The geographic distribution of the NFV platform can be seen

in Figure 1.

Interested organizations hosting their own NFV infrastructure

can flexibly connect to the 5TONIC NFV ecosystem, subject

to approval by the 5TONIC Steering Board, become testbed

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 3 of 22

providers within the distributed ecosystem, and be involved

in joint experimentation and demonstration activities. To this

end, they must feature a VIM (Virtual Infrastructure Manager)

compliant with the OSM software stack. The 5TONIC NFV

orchestrator is able to interact with the VIMs at the sites

involved in a given service deployment, coordinating the

allocation and setup of the computing, storage and network

resources needed for the instantiation and interconnection of

the VNFs that compose a network service, and controlling its

lifecycle, from its on-boarding to its final decommissioning.

In order to manage the exchange of control and data

traffic within all the interconnected sites, the 5TONIC NFV

ecosystem makes use of an overlay network architecture

based on Virtual Private Networks (VPN). This approach

provides secure PKI-based access to the external sites that

are integrated into the 5TONIC ecosystem, allowing the

exchange of NFV control information between the OSM

software stack and the different VIMs distributed across the

testbeds, as well as the exchange of information that is

required to manage and configure all the VNFs. Moreover,

this overlay network supports the dissemination of data traffic

among VNFs that are deployed at different sites.

In this context, this paper details the protocol designed to

incorporate an external site to an NFV ecosystem. The

protocol assumes that the ecosystem is governed by a

single NFV orchestrator, installed at a central site, and

external sites feature a VIM solution compliant with the

orchestrator software stack. The proposed protocol allows

to increment the portfolio of resources of the experimental

ecosystem, with the flexible incorporation of NFV sites and

vertical-specific infrastructures. This enables the creation of a

distributed MANO platform capable of testing and validating

novel network and vertical services across multiple sites,

under the control of a single NFV orchestrator. In order to

illustrate the inner operation of the protocol, the process will

be exemplified by adding an external NFV site to the current

5TONIC NFV ecosystem, describing the needed components

at the external site and 5TONIC, as well as all the steps to

be taken during the integration process. Figure 2 provides

an overview of the objective of the integration, with the new

NFV-based testbed attached to the 5TONIC platform from

where network services can be deployed, by means of VPN

connections between the central site and the rest of the

external infrastructures.

In addition, to showcase the effectiveness of the protocol,

the deployment of a simple vertical service will be shown,

using the 5TONIC ecosystem and an external site with

NFV-capable small unmanned aerial vehicles (SUAVs). The

design of the vertical service has been inspired by an

experiment presented in Vidal et al.9 , which has been

simplified for the illustration purposes of this paper. Figure

3 outlines the service, which aims at aiding smart farming

activities on a remote area. The service considers a smart

farming service provider who uses SUAVs to collect and

disseminate the data produced by meteorological sensors

scattered over a crop field. For simplicity, the experiment

presented in the paper considers a single SUAV and a

sensor, capable of providing temperature, humidity, and

pressure measurements. In the experiment, the external

NFV site hosts a Wi-Fi access point that is deployed as

VNF over the SUAV. This VNF offers network access

connectivity to the sensor, forwarding the sensed data

towards a gateway function. The latter is deployed as a

VNF on a ground equipment (a mini-ITX computer). The

dissemination of data from the sensor to the gateway

function follows a Publish/Subscribe approach based on the

Message Queuing Telemetry Transport (MQTT) protocol15 .

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 4 of 22

The gateway function processes and then disseminates the

data towards an Internet-of-things (IoT) server, which is made

available as a VNF at the central site of the NFV ecosystem,

based on the Mainflux16 open-source platform. Finally, the

scenario assumes a remote area where Internet connectivity

is provided by a cellular non-3GPP access network. Hence,

the service includes two additional VNFs: 1) an access router

VNF, which implements the user-plane protocol stack of a

3GPP user equipment connected to a non-3GPP access

network17 ; and 2) a baseline implementation of a 5G core

network, supporting the forwarding of information between

the access router and the IoT server VNFs. To this purpose,

the 5G core VNF provides a simplified implementation of the

user-plane of a non-3GPP interworking function and a user

plane function, as defined by 3GPP17 .

Finally, Figure 4 represents the most relevant processes

involved during the development of the protocol, highlighting

their logical interconnections and the entities in charge of their

execution.

Protocol

1. Provision of the central site of the NFV
ecosystem (prior requisites of the experiment)

1. Allocate an IP address space to be used by the central

site. For the purposes of this protocol, the private address

space 10.4.0.0/16 will be used.

2. Install the Management and Orchestration (MANO)

software stack in the central site. In particular, the

experiment carried out throughout this protocol uses

the Open Source MANO (OSM) Release SEVEN18 ,

which requires the following resources: Ubuntu 18.04 as

operating system, 2 Central Processing Units (CPUs),

8 GB of Random-Access Memory (RAM), 40 GB

hard-drive-disk, and at least one network interface

with Internet access. For the installation, follow the

instructions available at the OSM Release SEVEN

documentation18 .

3. Set up a Virtual Infrastructure Manager (VIM) compatible

with OSM in the central site. Specifically, the experiment

uses OpenStack release Ocata20 , running on a Virtual

Machine (VM) with Ubuntu 16.04 , 4 CPUs, 16 GB of

RAM and 200 GB of hard drive. The NFV Infrastructure

(NFVI) handled by this VIM comprises three server

computers, each with Ubuntu 16.04, 8 CPUs, 32 GB of

RAM and 2 TB of storage. For the installation, follow the

Ocata release documentation21 .

1. Deploy a virtual network within the OpenStack

cloud platform, using an IP address range from the

address space allocated in step 1.1. This network,

henceforth referred to as management network,

will be used to support the exchange of NFV

orchestration information between the OSM and the

virtual network functions (VNFs) instantiated at the

central site.

2. Configure a virtual network (henceforth

denominated as data network) to support inter-site

data communications, between the VNFs of the

central site and other VNFs executed at external

sites. To this end, use an IP address range from the

address space of step 1.1.

NOTE: The implementation of the networks

mentioned in steps 1.3.1 and 1.3.2 has been done

using provider networks of OpenStack. Provider

networks must be connected to the physical network

infrastructure of the central site to guarantee an

appropriate operation.

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 5 of 22

4. Connect both virtual private networks (i.e., the

management and the data networks), as well as the VIM

and the OSM machines, to an equipment providing edge

routing functionalities. This router will serve as the entry

point to the central site of the NFV ecosystem.

5. Make available a public experiment repository to provide

all the content needed to carry out the experiment. In

particular, this protocol uses the public repository at22 .

2. Configuration of the virtual private network
service

1. Allocate an IP address space to support the appropriate

operation of the multi-site ecosystem, so that network

communications can effectively be established among

multiple sites.

NOTE: Enabling effective network communications

among multiple sites requires a careful design of the

IP address space to be used by the NFV ecosystem,

as well as by external sites that need to connect to

it. In particular, the address space allocated for inter-

site communications should not collide with the address

space already in use at every other site for other

purposes.

1. Allocate an IP address space to be used by external

sites. Addresses in this block will be assigned to NFV

entities (e.g., VIMs) and VNFs of the external site.

To exemplify this protocol, the private address space

10.154.0.0/16 will be used.

2. Allocate an IP address space to the virtual links

between the external sites and the NFV ecosystem.

These virtual links will be supported by a VPN

service. To exemplify this protocol, the address

range 10.154.254.0/24 will be utilized for these

virtual links.

2. Set up an equipment to provide the Virtual Private

Network (VPN) service (i.e., a VPN server). In particular,

the experiment uses a server computer with Ubuntu

16.04 (64-bit variant image), six independent CPUs, 16

GB RAM, 1 TB storage disk, and two network interfaces.

1. Configure one of the network interfaces of the VPN

server to allow the reception of connection requests

from external sites through the Internet. To that

end, it is necessary to use an interface of the

server configured with a public IP address.

2. Configure the link between the VPN server and the

edge router of central site. In the experiment this

link was allocated the address range 10.4.255.0/24.

Configure appropriate network routes at the VPN

server, so that the NFV ecosystem becomes

accessible from external sites connected to the VPN

service.

3. Install the VPN open-source software provided by the

OpenVPN23 project into the VPN server. Specifically,

this experiment uses the OpenVPN version 2.3.10,

and its deployment was done with the bash script

"openvpn-install.sh", available at http://github.com/Nyr/

openvpn-install (other installation options are described

in the OpenVPN documentation24). The bash script

presents the alternative parameters that will result in the

configuration of the VPN service.

1. Select the IP address to listen to VPN connection

requests (i.e., the public IP address).

2. Decide which protocol (UDP or TCP) should be used

to drive the communications over the VPN. In this

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 6 of 22

case, the experiment leverages on UDP that is the

recommended protocol.

3. Specify the port that will comprise the duple

(together with the public IP address) that will be

used to receive the service connection requests. By

default, the assigned value is 1194.

4. Choose one of the DNS servers of the list prompted

by the assistant that will handle the name resolution

requests performed by the clients of the VPN

service.

5. Press any key to enable the automatic initiation of

the VPN service installation process.

4. Edit the configuration file "server.conf" that is located

under the "/etc/openvpn/server/" directory and include

the "client-to-client" directive aiming to extend the basic

setup provided by step 2.3. Thus, different clients

connected to the VPN service will be able to reach each

other.

5. Enable the individual client configuration within the VPN

setup to be able to independently manage the routing

assignments for each client.

1. Add the "client-config-dir ccd" directive, editing the

same configuration file as in step 2.4.

2. Create the directory "ccd" using the command

"mkdir /etc/openvpn/ccd/". This directory will serve

during the next section of the protocol to place the

files comprising the routing directives associated

to the clients intended to be integrated within the

platform.

6. Set up the firewall rules that are needed to allow

the connections with the service, while protecting the

VPN server against malicious attack. To that end, this

experiment leverages on iptables25 , which is a command

line utility developed to configure the Linux kernel

firewall.

1. First, block incoming traffic to the VPN server with

the command "iptables -P INPUT DROP".

2. Allow the reception of VPN connection requests

with the commands "iptables -A INPUT -i <public-

intf> -m state --state NEW -p udp --dport 1194 -

j ACCEPT" (<public-intf> is the name of the VPN

server interface with the public IP address) and

"iptables -A INPUT -i tun+ -j ACCEPT".

3. Allow traffic forwarding between the VPN server

interfaces (i.e., the public interface and the virtual

interface created by the VPN service called

tun0), to enable the VPN server to process

the service connection request. For this purpose,

execute the command "iptables -A FORWARD

-i tun+ -o <public-interface> -m state --state

RELATED,ESTABLISHED -j ACCEPT && iptables -

A FORWARD -i <public-interface> -o tun+ -m state

--state RELATED,ESTABLISHED -j ACCEPT".

4. Enable the VPN server to provide the network

address translation (NAT) capability with the aim

of supplying Internet access to the central site,

executing: "iptables -t nat -A POSTROUTING -s

10.4.0.0/16 -o <public-interface> -j MASQUERADE

&& iptables -A OUTPUT -o tun+ -j ACCEPT".

3. Integration of an external NFV site

1. Obtain an appropriate IP address range to integrate the

site into the NFV ecosystem. This address range will be

provided by the network operations center of the NFV

ecosystem. According to step 2.1.1 of this protocol, the

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 7 of 22

experiment will use a range of IP addresses for the

external site within 10.154.0.0/16.

2. Create and provide the security credentials to connect to

the NFV ecosystem.

1. Generate a VPN credential that will allow the new

infrastructure to establish a secure connection with

the VPN server. To this purpose, execute the

command "bash openvpn-install.sh" in the VPN

server, select the option "1) Add a new client" of the

prompted list, and provide the name to be associated

with that credential, e.g., uc3m_infrastructure. This

step will generate a file with the VPN credentials

(named "uc3m_infrastructure.ovpn" in the example).

2. Create a text file in the "/etc/openvpn/ccd/" directory

of the VPN server, including the routing directives

(as specified in the OpenVPN documentation24) that

must be pushed by the VPN server each time a

connection to the VPN service is established using

the VPN credentials.

NOTE: The name of the text file must match the

name specified during the creation of the VPN

credential (e.g., uc3m_infrastructure) to provide a

customized configuration for every VPN client.

3. Provide the VPN credential file to the technical staff

of the external site. This must be done through

a secure and reliable channel. In this experiment,

a manual encryption process is used. To encrypt

the VPN credential, execute the command "7za

a -tzip '-p<password>' -mem=AES256 <encrypted-

file> <credential-name>", setting <password> as

the desired encryption key, <encrypted-file> as the

chosen name for the encrypted file, and <credential-

file> as the file name of the VPN credential file (e.g.,

uc3m_infrastructure.ovpn).

4. Provide the encrypted credential to the technical

staff of the new site, along with the key that

allows the decryption procedures, through a secure

communications channel.

NOTE: In this experiment, the encrypted credentials

were provided by electronic email, whereas the

decryption key was sent through a separate channel,

using the short message service (SMS), with an

offline agreement of the telephone number.

3. Set up the environment at the new site, so as to establish

the connection with the NFV ecosystem, and to allow the

remote NFVI be attached to the OSM stack of the central

site.

1. Install the VPN software provided by OpenVPN24

in a computer, to enable a virtual link between

the external site and the central site of the

NFV ecosystem. The computer with the OpenVPN

software will serve as a VPN client or VPN endpoint

at the external site. The virtual link will be realized by

means of a protected VPN tunnel between the VPN

endpoint and the VPN server. In the experiment, the

VPN endpoint runs in a server computer with Ubuntu

18.04, 8 CPUs, 8 GB RAM, 128 GB storage disk,

and 3 GbE interfaces (one for connecting with the

VPN service over Internet).

2. Activate IP forwarding in the VPN endpoint to

support network routing capabilities. To that end,

include the line "net.ipv4.ip_forward=1" in the

system configuration file located in the "/etc/

sysctl.conf" path, and load the updated configuration

with the command "sudo sysctl -p".

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 8 of 22

3. Decrypt the VPN credential file with the information

received in step 3.2.4, using the command "7za e

<encrypted-file>", where the <encrypted-file> is the

file name of the encrypted VPN credential. Specify

the decryption key when prompted by the command.

4. Boot the OpenVPN software with the decrypted

credential file using the command "sudo openvpn --

config <credential-file>" (<credential-file> is the file

name of the VPN credential). With this, the VPN

endpoint will authenticate to the VPN server, and will

automatically receive appropriate VPN configuration

parameters and network routes. This way, the VPN

endpoint will behave as an edge router with a virtual

link to the central site of the NFV ecosystem.

5. Verify the proper operation of the VPN endpoint,

using the ping command to verify the availability of

connectivity to one of the nodes of the central site

(e.g., the OSM stack equipment).

6. In the new site, select an OSM compliant VIM to

allow operations with the MANO platform. For this

experiment, OpenStack release Ocata is used.

NOTE: OSM Release SEVEN supports the following

virtual infrastructure managers: OpenStack,

OpenVIM26 , VMware's vCloud Director27 , Amazon

Web Service28 , Microsoft Azure29 , and Eclipse

fog0530 (see OSM documentation18 for specific

configuration details).

7. Install OpenStack release Ocata20 (see the detailed

procedures in the release documentation21).

8. Deploy the NFV infrastructure in the external site and

attach it to the VIM. In particular, this experiment

uses an NFV infrastructure comprising three single

board computers (SBCs), each with a compute

capacity of 1 GB RAM, 4 CPUs, and 32 GB storage

disk; and a single mini-ITX computer with 8 CPUs, 8

GB RAM and 128 GB for storage.

NOTE: The external site exemplified in this protocol

is based on an NFV infrastructure of NFV-capable

small unmanned aerial vehicles (SUAVs) . The

details followed to enable such infrastructure are

provided in Nogales et al31 . Steps 3.3.6 to 3.3.8 are

optional, as an NFV infrastructure may already exist

at the external site.

9. Create an OpenStack project to specify the set of

computational resources of the external site that

will be integrated into the NFV ecosystem. To do

so, access to the graphical user interface (GUI)

provided by OpenStack, log in to the system with

the administrator credentials, click on the + Create

Project button of the Identity -> Projects tab, and

create a project completing the displayed form with

the requested information.

10. Create a valid user that will manage the project

created in the previous step. To this purpose, access

the Identity -> Users tab with the same login as in

the previous step, click on + Create User, and fill in

the required fields of the displayed form (username

and password), selecting the new created project as

the primary project, and choosing the admin role.

11. Modify the security rules to allow VNF

communication permissions in the new site (in

particular, enable SSH and ICMP traffic). To that

end, access the OpenStack GUI with the credentials

of the user created in the previous step, follow the

sequence: Project -> Network -> Security Groups

-> + Add Rule, and select the SSH option of the Rule

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 9 of 22

drop-down. Repeat the process but selecting the All

ICMP option included in the drop-down menu.

12. Download the images of a trial service offered

by the OSM community, the Ping Pong

network service ("Fedora-x86_64-20-20131211.1-

sda-ping" and "Fedora-x86_64-20-20131211.1-sda-

pong") from the public experiment repository, and

upload them to the VIM of the external site. To this

purpose, follow the sequence Project -> Compute -

> Images -> + Create Image, and create the images

using the displayed form and selecting each of the

image.

13. Assign two IP address ranges within the address

space of the external site (allocated in step

3.1). These ranges will be used to support the

management of the VNFs of the external site and to

enable inter-site data communication among VNFs,

respectively.

14. Create a provider network (control-provider)

using the VIM. This network will support NFV

communications between the OSM stack at the

central site and the VNFs deployed at the new

site for management purposes. This type of

communications will also enable the OSM stack to

configure VNFs after their deployment. To create a

provider network in OpenStack, follow the sequence

Admin -> System -> Networks -> + Create

Network and fill in the details of the new network,

using the selected IP address range in the previous

step.

15. Create a second provider network (data-provider)

using the VIM. This network will support data

communications among the VNFs of the site and

other VNFs of the NFV ecosystem. To create this

provider network in OpenStack, follow the sequence

Admin -> System -> Networks -> + Create

Network, and fill in the details of the new network

using the assigned address range.

NOTE: Instructions on how to create virtual networks

will vary depending on the VIM software. Check their

respective software documentation for details.

16. Share the VIM-related information (in particular, the

username/password, and the project created in the

steps 3.3.9 and 3.3.10) with the technical staff of the

central site, to enable the attachment of the VIM to

the OSM software stack.

4. Attach the external NFV infrastructure to the OSM

software stack of the central site, using the information

obtained from the step 3.3.16.

1. Verify the connectivity between the OSM stack of the

central site and the VIM of the new site, using the

ping tool.

2. If the previous connectivity test is successful, attach

the external VIM to the OSM stack of the central site.

To do so, use the following command in the OSM

machine: "osm vim-create --name <external-VIM-

name> --user <VIM-username> --password <VIM-

user-password> --auth_url <authentication URL> --

tenant <project-name> --account_type <VIM-type>".

In this command: <external-VIM-name> is the name

selected to identify the VIM within the OSM stack,

<VIM-username> is the name of the user authorized

to handle the resources of the external site (see

step 3.3.10), <VIM-user-password> is the password

of the indicated user, <authentication URL> is the

link to the API made available by the VIM to enable

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 10 of 22

requests from the OSM stack , <project-name> is

the project name defined in step 3.3.9, and <VIM-

type> is the VIM software used (in this experiment,

OpenStack).

5. Verify the appropriate attachment of the new VIM to the

OSM stack of the NFV ecosystem.

1. Execute the command "ro_id=$(docker ps | grep

osm_ro | cut -d ' ' -f 1)” to identify the id of the

container implementing the Resource Orchestrator

(RO) module within the OSM system. This module is

the responsible for interacting with the VIMs in order

to coordinate and allocate the needed resources in

the deployment of subsequent network services.

2. Access the RO container using the command

"docker exec -it $ro_id bash". This command utilizes

the identifier obtained in the execution of the

previous step.

3. Check that the new VIM is included in the

list of available datacenters, using the command

"openmano datacenter-list". The new site should

appear in the list with the same name as the

previously introduced one in the step 3.4.2 with the

<external-VIM-name> parameter.

4. List the images that have been uploaded to the

VIM of the external site, using the command

"openmano vim-image-list --datacenter <external-

VIM-name>". The <external-VIM-name> parameter

indicates the name selected to identify the VIM within

the OSM stack. If the execution of this command

is successful, the connectivity with the external VIM

has successfully been stablished. Check that the

Ping Pong images are included in the list.

5. List the networks available at the new site with

the command "openmano vim-net-list --datacenter

<external-VIM-name>". Check that control-provider

and data-provider are present.

6. Perform a preliminary validation of the proper integration

of the new site, using a trial service offered by the OSM

community (all the content in this regard is included

within the experiment repository). For this purpose,

the commands included in the following steps will be

executed in the equipment hosting the OSM stack.

1. Onboard the VNF descriptors (VNFDs) to the OSM

stack running the command "osm vnfd-create <vnfd-

package>" for each of the VNFs composing the

trial service (<vnfd-package> corresponds to the file

name of the VNFD package).

2. Onboard the NS descriptor (NSD) of the trial service

with the command "osm nsd-create <nsd-package-

descriptor>", where <nsd-package> indicates the

file name of the NSD package (in this experiment,

ping_pong_ns.tar.gz)."

3. Start the instantiation of the Ping Pong Network

Service (NS) on the external and the central sites,

using the command "osm ns-create --ns_name

<instantiation-name> --nsd_name ping_pong_ns --

vim_account <external-VIM-name> --config '{vnf:

[{member-vnf-index: '2', vim_account: <central-

VIM-name>}]}'". The <external-VIM-site> parameter

identifies the VIM of the external site within the

OSM stack. The "--config" option indicates that all

the VNFs composing the service must be deployed

on the external site handled by that VIM, except

the VNF identified by the index 2 in the NS, which

will be deployed in the central site (the VIM of the

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 11 of 22

central site is specified in the <central-VIM-name>

parameter).

4. Check that the NS has been deployed and its status

using the command "osm ns-list". If the instantiation

is successful, the status will change to "READY".

5. Check the IP address of each of the two VNFs with

"osm vnf-list" (necessary to log in to the machines

afterwards).

6. Connect to each VNF via SSH, using the command

"ssh fedora@<VNF-IP>" (<VNF-IP> represents the

IP address of the VNF to connect to, obtained in

the previous step). Introduce the password "fedora"

when prompted by SSH. Once logged into both

machines, check their interfaces using the command

"ip address show", and obtain the IP addresses

on their interfaces attached to the data-provider

network (interface eth1 in both VNFs). From one of

the VNFs, perform a ping to the other VNF, using

the remote IP address in the data-provider network.

If there is connectivity, the preliminary validation test

will be considered successful.

4. Validation of the NFV multi-site platform with a
realistic vertical service

1. Download the VNF images from the public repository

and upload them into the VIM of their corresponding site

(see Figure 3), following the procedure detailed in the

step 3.3.12. In particular, the external site will host the

Access Point VNF, Router VNF, MQTT Gateway VNF,

and Access Router VNF. The central site will host the 5G

Core VNF and the IoT Server VNF.

2. Onboard the VNFDs and the NSD of the smart farming

service to the OSM stack (all the descriptors can be

downloaded from the experiment repository).

1. Onboard the VNFDs to the OSM stack executing

the command "osm vnfd-create <vnfd-package>",

for each of the VNFs of the network service. In this

case, the <vnfd-package> parameter corresponds to

the file name of the VNFD package.

2. Onboard the NSD to the OSM stack with

the command "osm nsd-create <nsd-package>",

where <nsd-package> indicates the file name

of the NSD package (in this experiment,

jove_uavs_scenario_nsd.tar.gz).

3. Deploy the smart farming network service. To

this purpose, run the following command from

the OSM command line interface: osm ns-

create --ns_name <instantiation-name> --nsd_name

jove_uavs_scenario_nsd --vim_account <external-VIM-

name> --config '{vnf: [{member-vnf-index: "5",

vim_account: <central-VIM-name>}, {member-vnf-index:

"6", vim_account: <central-VIM-name>}], wim_account:

False }'.

NOTE: As indicated in the step 3.6.3., the <external-VIM-

name> and <central-VIM-name> parameters indicate the

sites where the VNFs are to be deployed. Particularly, all

the VNFs composing the smart farming service will be

placed into the new external site, except for those with

index 5 and 6 (the 5G Core and the IoT server VNFs) that

will be allocated to the central site.

4. Check that the NS has been deployed, following the

same procedure as in step 3.6.4.

5. Access to the IoT server VNF with the command "ssh

mosquittosubscriber@<VNF-IP>" and check its interface

configured to communicate with MQTT Gateway VNF

through the command "ip address show dev eth1". The

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 12 of 22

IP address of the VNF (<VNF-IP>) can be obtained

executing the "osm vnf-list" in the OSM command line.

6. Following an analogous procedure, access to the MQTT

Gateway VNF, and run the command "sudo python3

publisher_MQTT_GW.py -ma <IoT-IP> -ba <MQTT-GW-

IP>" where the <IoT-IP> is obtained in the previous

step, and the <MQTT-GW-IP> executing the "ip address

show dev eth1" command in the MQTT Gateway VNF.

This step initializes the MQTT Gateway VNF, which will

receive data generated by the sensor using the MQTT

standard15 , transmitting these data to the IoT server VNF

using the same standard.

7. Prepare a Single Board Computer (SBC) attaching a

meteorological sensor, and with transceiver capacity to

transmit sensor readings towards the MQTT Gateway

VNF.

NOTE: To exemplify this protocol, an SBC model in

particular has been used. Hence, the following steps may

need to be adapted in case of utilizing a different SBC

platform.

1. Connect (e.g., using tin-soldered copper wires) the

board pins of the sensor to the general-purpose

input/output (GPIO) pins of the SBC, following the

configuration scheme of Figure 5.

2. Enable the I2C kernel module in the SBC to be able

to verify if the sensor is detected. For this purpose,

run the command "sudo raspi-config", follow the

sequence Interfacing Options -> I2C -> Yes in the

displayed menu, and reboot the SBC to make the

changes effective.

3. Verify that the sensor is detected Installing the

software i2c-tools in the SBC, and executing the

command "sudo i2cdetect -y 1". If so, a grid should

appear indicating the position where the sensor is

detected.

4. Install the appropriate software libraries to allow

the SBC reading and sending the data provided by

the sensor. In particular, this experiment leverages

on the RPi.bme28032 and paho-mqtt33 Python

libraries.

8. Using the mobile application of the SUAV, take off the

aerial vehicle that hosts the Access Point VNF, and

position it to provide wireless coverage to the SBC with

the sensor.

NOTE: The flight of the NFV-capable SUAVs are

independent from the operational behaviour of the

network service, which is able to operate whether the

SUAVs are flying or in a state of repose to mitigate battery

consumption. Thus, the step 4.8 is optional.

9. Attach the SBC in charge of reading the data collected by

the sensor to the Wi-Fi wireless access point provided by

the Access Point VNF). After a successful attachment, a

wireless network path will be enabled from the sensor to

the MQTT Gateway VNF.

10. Start the transmission of sensed data,

running the command "python3 /home/ubuntu/

sensorDataTransmission.py -a <MQTT-GW-IP>" in the

SBC that incorporates the sensor (<MQTT-GW-IP> is the

IP address obtained in the step 4.6.).

11. Access the web GUI provided by the IoT server VNF to

check the correct real-time reception of the sensed data.

To that end, check the IP address of the IoT Server VNF

with the command "osm vnf-list", and type the following

Uniform Resource Locator (URL) in a web-browser:

http://<VNF-IP>:3001, where <VNF-IP> is the IP address

of the IoT server VNF. Then, click on the Sensors Data

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 13 of 22

Collection button of the Home tab, and verify the real-

time update of the graphs included in the dashboard as

data are received.

NOTE: To be able to access to the URL mentioned in the

step 4.12, the device with the web-browser attempting

to reach that resource must be connected to the NFV

ecosystem and have IP connectivity with the IoT Server

VNF. The VPN service can be also used for this purpose.

12. Wait for an appropriate period of time to obtain

representative results of the execution of the smart

farming service. Then, collect the data stored in the IoT

server VNF for further analysis. Considering that the

sensor included in this experiment provides temperature,

humidity and pressure readings every 5 seconds, the

service in the experiment run for a period of 10 minutes,

resulting in 180 samples of sensed data (60 for each

meteorological value type).

13. Access the database of the IoT Server VNF to retrieve

the sensed data for further analysis. To this purpose,

execute the command "id_database=$(sudo docker ps |

grep 'influxdb:' | cut -d ' ' -f 1)" on the IoT Server VNF, and

then "sudo docker exec -it $id_database bash"

14. Export the data to a comma-separated value (CSV)

file, running the command "influx -database 'mainflux' -

execute "SELECT * FROM messages WHERE \"name\"

= '<data>' " -format csv > /tmp/<filename>.csv". Modify

the parameter <data> to select which type of sensed

data is to be export with the "temperature", "humidity" or

"pressure", and set the <filename> parameter to choose

a name for the output file that will keep the results.

15. Save the data files generated in the previous step for later

representation (see Representative Results section) and

verification of proper operation of the smart farming

service.

Representative Results

After carefully following the protocol to incorporate a new site

to the central platform and run one network service to validate

its proper functionality, Figure 6 depicts a screenshot of the

open-vpn-monitor tool. It can be observed how the new site

is using the VPN for all its communications, showing how its

communications follow the VPN to allow this data exchange

and, in consequence, the correct addition of the new site to

the VPN service.

As depicted in Figure 3, the network service is delivering

information from a sensor located in a remote infrastructure

to the server located in the central site. In addition, Figure

7 displays the successful deployment of the network service

from the OSM web GUI, showing how the experiment can

be properly instantiated in the new remote infrastructure from

the MANO stack located within the central site. Moreover, the

time required in the experiment to complete the deployment

of the service is around eight minutes. This value, along with

the time needed to on-board the service descriptors into the

orchestration platform (about 9 seconds, with 1.3 seconds

per descriptor, considering both the NS and each VNF

descriptors), enable to satisfy the Key Performance Indicator

(KPI) of 90 minutes for the service creation time, as indicated

by the 5G Infrastructure Public Private Partnership34 . In this

context, the work presented in Vidal et al.9 includes an in-

depth analysis of the service creation time with multiple sites

using the presented protocol.

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 14 of 22

Figure 8 displays the data collected from the sensor,

including the values of humidity, temperature and pressure

respectively. These samples correspond to all data sent from

the sensor to a remote server located in 5TONIC, where these

values are stored in a database. All these data demonstrate

that the platform is able to deploy practical network services

after the inclusion of a new infrastructure, as well as to

correctly enable communications between sites.

Figure 1: VPN service site distribution. Distribution of the VPN service through the platform and their link

connectivity (all passing through 5TONIC). Please click here to view a larger version of this figure.

Figure 2. Overview of the platform and VPN service. This figure shows all elements of the platform: the central location,

along with its NFV Infrastructure, the VPN service and a new infrastructure aggregated to the system. It also includes the

connections between its elements. Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61946/61946fig01large.jpg
https://www.jove.com/files/ftp_upload/61946/61946fig02largev2.jpg

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 15 of 22

Figure 3: Overview of the network service. It depicts the elements involved in the network service, its distribution and its

logical, and networking, connectivity. Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61946/61946fig03large.jpg

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 16 of 22

Figure 4: Protocol Workflows. Each column represents one section of the protocol, where every action performed is

described, its logical connection between them and the component in charge of its execution. Please click here to view a

larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61946/61946fig4v3large.jpg
https://www.jove.com/files/ftp_upload/61946/61946fig4v3large.jpg

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 17 of 22

Figure 5: Pin configuration scheme. Diagram representing how to make the physical connections between the board pins

of the sensors and the GPIO pins of the SBC that incorporates that sensor. Please click here to view a larger version of this

figure.

Figure 6: OpenVPN-monitor snapshot. The picture shows that the aggregated infrastructure is connected to the VPN

service, including some of its details regarding its connection. Moreover, the figure also depicts additional connections

belonging to other remote infrastructures. Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61946/61946fig05large.jpg
https://www.jove.com/files/ftp_upload/61946/61946fig05large.jpg
https://www.jove.com/files/ftp_upload/61946/61946fig06largev2.jpg

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 18 of 22

Figure 7: OSM NS deployment status. OSM graphical interface, showing the successful deployment of the test network

service in the remote infrastructure. Please click here to view a larger version of this figure.

Figure 8: Representative analysis of the data collected by the sensor. (A) Illustration of the temperature data periodically

collected by the sensor every 5 seconds. (B) Graphical representation of the humidity data collected by the sensor every 5

seconds. (C) Visual depict of the pressure data collected by the sensor every 5 seconds. Please click here to view a larger

version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/61946/61946fig07largev2.jpg
https://www.jove.com/files/ftp_upload/61946/61946fig08largev2.jpg
https://www.jove.com/files/ftp_upload/61946/61946fig08largev2.jpg

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 19 of 22

Discussion

One of the most important aspects of the previously

described protocol is its outstanding flexibility to incorporate

new computational infrastructures to an NFV ecosystem,

regardless of their distribution in terms of geographical

location (as long as bandwidth and latency of the network

communications with remote sites supports it). This is

possible through a VPN-based overlay network architecture,

which enables the establishment of a virtual link to connect

remote sites to the central premises of the NFV ecosystem.

This approach enables the provision of an effective and

secure channel to support the NFV and data communications

among sites of an NFV ecosystem, reducing the probability

of external parties accessing and/or modifying sensitive

information regarding NFV orchestration processes and data

from deployed services. In this context, the protocol also

describes a specific methodology to share securely the

VPN credentials with the external sites that will enable the

integration of new infrastructures. The protocol has been

exemplified using the NFV ecosystem made available at

5TONIC by Universidad Carlos III de Madrid, Telefónica, and

IMDEA Networks Institute, although it is generic to be utilized

in other NFV environments satisfying the prior requisites

mentioned in step 1 of this protocol.

In addition, it is worth emphasizing the exclusive

utilization of open-source tools and software for the

protocol implementation. Notwithstanding the potentially

beneficial functionalities that could be offered by different

proprietary solutions (e.g., Fortinet35), the use of open-

source developments has facilitated the integration of all

elements encompassed by the protocol due to their inherent

characteristics such as cost effectiveness, an extensive

software support provided by the open-source community,

and a high level of reliability, just to name a few of them.

Moreover, the utilization of open-source technologies can

also promote synergies between components of similar

nature. For instance, in order to monitor the VPN connection

status for the clients using the platform, the VPN service

implemented throughout the protocol could rely on the open-

vpn monitor tool36 (a python-based monitoring tool capable

of interoperating with OpenVPN servers).

On the other hand, the protocol specification considers the

instantiation of networking services across different sites for

validation purposes. In this regard, it is important to highlight

that the deployment of services on a given site is subject to

the availability of compute, storage and network resources

at the site, as well as of specialized equipment that might

be needed to perform the deployment (e.g., NFV-enabled

SUAVs). This is not a limitation of the protocol, and should be

taken into account by stakeholders interested in reproducing

the experiment described in this paper.

Moreover, it should be noted that the time required to carry

out the deployment of network services highly depends

on several factors such as the network path between the

orchestrator and the different VIMs, the performance of

data communications between the VIM and its managed

computational nodes, and also in the intrinsic nature of these

computational nodes (not only because of their available

computing resources, but also the technologies incorporated

to conduct the virtualization of network functions).

Finally, and given the outstanding performance that this

platform and its VPN service had on the European projects

and collaborative works where it has been used so far

(e.g., 5GINFIRE, 5GRANGE or 5GCity, mentioned in the

introduction of this document), it will be regarded as an

important element in emerging European projects where

Universidad Carlos III de Madrid, Telefónica, and IMDEA

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 20 of 22

Networks Institute participate, such as the Horizon 2020

LABYRINTH, or national projects, like TRUE-5G.

Disclosures

The authors have nothing to disclose.

Acknowledgments

This work was partially supported by the European

H2020 LABYRINTH project (grant agreement H2020-

MG-2019-TwoStages-861696), and by the TRUE5G project

(PID2019-108713RB-C52PID2019-108713RB-C52 / AEI /

10.13039/501100011033) funded by the Spanish National

Research Agency. In addition, the work of Borja Nogales, Ivan

Vidal and Diego R. Lopez has partially been supported by the

European H2020 5G-VINNI project (grant agreement number

815279). Finally, the authors thank Alejandro Rodríguez

García for his support during the realization of this work.

References

1. Gupta, A., Jha, R. K. A Survey of 5G Network:

Architecture and Emerging Technologies. IEEE Access.

3, 1206-1232 (2015).

2. Yu, H., Lee, H. Jeon, H. What is 5G? Emerging 5G Mobile

Services and Network Requirements. Sustainability. 9,

1848 (2017).

3. Yi, B., Wang, X., Li, K., Huang, M. A comprehensive

survey of network function virtualization. Computer

Networks. 133, 212-262 (2018).

4. 5TONIC. An Open Research and Innovation Laboratory

Focusing on 5G Technologies. Available online: https://

www.5tonic.org. last access on 15 October (2020).

5. ETSI GS NFV 002. Network Functions Virtualization:

Architectural Framework. ETSI, V1.2.1. (2014).

6. ETSI OSM. An Open Source NFV Management and

Orchestration (MANO) software stack aligned with ETSI

NFV. Available online: https://osm.etsi.org. last access

on 15 October (2020).

7. Silva, A. P. et al. 5GinFIRE: An end-to-end open5G

vertical network function ecosystem. Ad Hoc Networks.

93, 101895 (2019).

8. Nogales, B. et al. Design and deployment of an open

management and orchestration platform for multi-site nfv

experimentation. IEEE Communications Magazine. 57

(1), 20-27 (2019).

9. Vidal, I. et al. Multi-Site NFV Testbed for Experimentation

With SUAV-Based 5G Vertical Services. IEEE Access. 8,

111522-111535 (2020).

10. Nogales, B., Sanchez-Aguero, V., Vidal, I., Valera, F.

Adaptable and automated small uav deployments via

virtualization. Sensors. 18 (12), 4116 (2018).

11. Gonzalez, L. F. et al. Transport-Layer Limitations for NFV

Orchestration in Resource-Constrained Aerial Networks.

Sensors. 19 (23), 5220 (2019).

12. Sanchez-Aguero, V., Valera, F., Nogales, B., Gonzalez,

L. F., Vidal, I. VENUE: Virtualized Environment

for multi-UAV network emulation. IEEE Access. 7,

154659-154671 (2019).

13. Kalogiros, C. et al. The potential of 5G experimentation-

as-a-service paradigm for operators and vertical

industries: the case of 5G-VINNI facility. IEEE 2nd 5G

World Forum (5GWF), Dresden, Germany. 347-352.

(2019).

14. Ordonez-Lucena, J., Tranoris, C., Rodrigues, J.,

Contreras, L. M. Cross-domain Slice Orchestration

for Advanced Vertical Trials in a Multi-Vendor 5G

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 21 of 22

Facility. 2020 European Conference on Networks and

Communications (EuCNC), Dubrovnik, Croatia. 40-45.

(2020).

15. OASIS. ISO/IEC 20922:2016 Information technology

-- MQ Telemetry Transport (MQTT) v3.1.1. iso.org.

International Organization for Standardization. (2016).

16. Mainflux. An Open source IoT Platform Edge computing

and Consulting services. Available online: https://

www.mainflux.com last access on 15 October (2020).

17. 3rd Generation Partnership Project. System architecture

for the 5g system; stage 2. Technical Specification

Group Services and System Aspects. 3GPP Technical

Specification 23.501, version 16.2.0 .(2019).

18. Open Source MANO Release SEVEN user-guide

documentation. Available online: https://osm.etsi.org/

docs/user-guide last access on 15 October (2020).

19. OpenStack. Open Source Software for Creating

Private and Public Clouds. Available online: https://

www.openstack.org last access on 15 October (2020).

20. OpenStack release Ocata Documentation. Available

online: https://docs.openstack.org/ocata last access on

15 October (2019).

21. OpenStack release Ocata Installation Tutorial for

Ubuntu. Available online: https://docs.openstack.org/

ocata/install-guide-ubuntu last access on 15 October

(2019).

22. Public Experiment Repository. Available online: http://

vm-images.netcom.it.uc3m.es/JoVE_2020/ last access

on 15 October (2020).

23. OpenVPN. A full-featured, open, and cost-effective

VPN solution. Available online: https://openvpn.net last

access on 15 October (2020).

24. OpenVPN How to Installation Guide. Available

online: https://openvpn.net/community-resources/how-

to/#installing-openvpn last access on 15 October (2020).

25. Iptables. A Linux kernel firewall implementation.

Available online: https://wiki.archlinux.org/index.php/

Iptables last access on 15 October (2020).

26. OpenVIM. An NFV VIM implementation contributed to

the open source community project ETSI OSM. Available

online: https://osm.etsi.org/gitweb/?p=osm/openvim.git

last access on 15 October (2020).

27. VMware Cloud Director. A cloud service-delivery

platform to operate and manage cloud-service

businesses. Available online: https://www.vmware.com/

uk/products/cloud-director.html last access on 15

October (2020).

28. Amazon Web Services (AWS). A broadly adopted cloud

platform offering services from datacenters globally.

Available online: https://aws.amazon.com last access on

15 October (2020).

29. Microsoft Azure. Microsoft cloud computing service for

developing and managing services and applications

through Microsoft-managed datacenters. Available

online: https://azure.microsoft.com/en-us last access on

15 October (2020).

30. Eclipse Foundation. Eclipse fog05, The End-to-

End Compute, Storage and Networking Virtualization

solution. Available online: https://fog05.io last access on

15 October (2020).

31. Nogales, B. et al. Automated Deployment of an

Internet Protocol Telephony Service on Unmanned Aerial

Vehicles Using Network Functions Virtualization. Journal

of Visualized Experiments. (153), e60425 (2019).

https://www.jove.com
https://www.jove.com/

Copyright © 2021 JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com February 2021 • 168 • e61946 • Page 22 of 22

32. RPi.bme280 0.2.3. A Python library to drive BME280

sensor over I2C. Available online: https://pypi.org/

project/RPi.bme280/ last access on 15 October (2020).

33. Paho-mqtt 1.5.0. A Python library implementing the

MQTT client version 3.1.1. Available online: https://

pypi.org/project/paho-mqtt/ last access on 15 October

(2020).

34. Public Private Partnership in Horizon 2020. Creating

a Smart Ubiquitous Network for the Future Internet.

Advanced 5G Network Infrastructure for the Future

Internet .(2013).

35. Fortinet. Deliver Network Security Digital Transformation.

Available online: https://www.fortinet.com last access on

15 October (2020).

36. Openvpn-monitor. Open source tool to monitor the status

of the service offered by an OpenVPN server. Available

online: https://github.com/furlongm/openvpn-monitor last

access on 15 October (2020).

https://www.jove.com
https://www.jove.com/

