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Abstract

The quantitative analysis of subcellular organelles such as mitochondria in cell

fluorescence microscopy images is a demanding task because of the inherent

challenges in the segmentation of these small and morphologically diverse structures.

In this article, we demonstrate the use of a machine learning-aided segmentation and

analysis pipeline for the quantification of mitochondrial morphology in fluorescence

microscopy images of fixed cells. The deep learning-based segmentation tool

is trained on simulated images and eliminates the requirement for ground truth

annotations for supervised deep learning. We demonstrate the utility of this tool on

fluorescence microscopy images of fixed cardiomyoblasts with a stable expression of

fluorescent mitochondria markers and employ specific cell culture conditions to induce

changes in the mitochondrial morphology.

Introduction

In this paper, we demonstrate the utility of a physics-

based machine learning tool for subcellular segmentation1

in fluorescence microscopy images of fixed cardiomyoblasts

expressing fluorescent mitochondria markers.

Mitochondria are the main energy-producing organelles

in mammalian cells. Specifically, mitochondria are highly

dynamic organelles and are often found in networks that are

constantly changing in length and branching. The shape of

mitochondria impacts their function, and cells can quickly

change their mitochondrial morphology to adapt to a change

in the environment2 . To understand this phenomenon, the
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morphological classification of mitochondria as dots, rods, or

networks is highly informative3 .

The segmentation of mitochondria is crucial for the

analysis of mitochondrial morphology in cells. Current

methods to segment and analyze fluorescence microscopy

images of mitochondria rely on manual segmentation or

conventional image processing approaches. Thresholding-

based approaches such as Otsu4  are less accurate due to

the high noise levels in microscopy images. Typically, images

for the morphological analysis of mitochondria feature a

large number of mitochondria, making manual segmentation

tedious. Mathematical approaches like MorphoLibJ5  and

semi-supervised machine learning approaches like Weka6

are highly demanding and require expert knowledge. A review

of the image analysis techniques for mitochondria7  showed

that deep learning-based techniques may be useful for the

task. Indeed, image segmentation in everyday life images for

applications such as self-driving has been revolutionized with

the use of deep learning-based models.

Deep learning is a subset of machine learning that provides

algorithms that learn from large amounts of data. Supervised

deep learning algorithms learn relationships from large sets

of images that are annotated with their ground truth (GT)

labels. The challenges in using supervised deep learning for

segmenting mitochondria in fluorescence microscopy images

are two-fold. Firstly, supervised deep learning requires a large

dataset of training images, and, in the case of fluorescence

microscopy, providing this large dataset would be an

extensive task compared to when using more easily available

traditional camera-based images. Secondly, fluorescence

microscopy images require GT annotations of the objects

of interest in the training images, which is a tedious task

that requires expert knowledge. This task can easily take

hours or days of the expert's time for a single image of cells

with fluorescently labeled subcellular structures. Moreover,

variations between annotators pose a problem. To remove

the need for manual annotation, and to be able to leverage

the superior performance of deep learning techniques, a

deep learning-based segmentation model was used here that

was trained on simulated images. Physics-based simulators

provide a way to mimic and control the process of image

formation in a microscope, allowing the creation of images of

known shapes. Utilizing a physics-based simulator, a large

dataset of simulated fluorescence microscopy images of

mitochondria was created for this purpose.

The simulation starts with the geometry generation using

parametric curves for shape generation. Emitters are

randomly placed on the surface of the shape in a uniformly

distributed manner such that the density matches the

experimental values. A 3D point spread function (PSF) of

the microscope is computed using a computationally efficient

approximation8  of the Gibson-Lanni model9 . To closely

match the simulated images with experimental images, both

the dark current and the shot noise are emulated to achieve

photo realism. The physical GT is generated in the form of a

binary map. The code for generating the dataset and training

the simulation model is available10 , and the step for creating

this simulated dataset is outlined in Figure 1.

We showcase the utility of deep learning-based segmentation

trained entirely on a simulated dataset by analyzing

confocal microscopy images of fixed cardiomyoblasts. These

cardiomyoblasts expressed a fluorescent marker in the

mitochondrial outer membrane, allowing for the visualization

of the mitochondria in the fluorescence microscopy images.

Prior to conducting the experiment given as an example

here, the cells were deprived of glucose and adapted to
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galactose for 7 days in culture. Replacing glucose in the

growth media with galactose forces the cells in culture to

become more oxidative and, thus, dependent upon their

mitochondria for energy production11,12 . Furthermore, this

renders the cells more sensitive to mitochondrial damage.

Mitochondrial morphology changes can be experimentally

induced by adding a mitochondrial uncoupling agent such as

carbonyl cyanide m-chlorophenyl hydrazone (CCCP) to the

cell culture medium13 . CCCP leads to a loss of mitochondrial

membrane potential (ΔΨm) and, thus, results in changes in

the mitochondria from a more tubular (rod-like) to a more

globular (dot-like) morphology14 . In addition, mitochondria

tend to swell during CCCP treatment15 . We display the

morphological distribution of mitochondria changes when

the galactose-adapted cardiomyoblasts were treated with

the mitochondrial uncoupler CCCP. The deep learning

segmentations of the mitochondria enabled us to classify

them as dots, rods, or networks. We then derived quantitative

metrics to assess the branch lengths and abundance of

the different mitochondrial phenotypes. The steps of the

analysis are outlined in Figure 2, and the details of the cell

culture, imaging, dataset creation for deep learning-based

segmentation, as well as the quantitative analysis of the

mitochondria, are given below.

Protocol

NOTE: Sections 1-4 can be omitted if working with existing

microscopy images of mitochondria with known experimental

conditions.

1. Cell culture

1. Grow the H9c2 cells in DMEM without glucose

supplemented with 2 mM L-glutamine, 1 mM sodium

pyruvate, 10 mM galactose, 10% FBS, 1% streptomycin/

penicillin, and 1 µg/mL puromycin. Allow the cells to

adapt to galactose for at least 7 days in culture before

the experiments.
 

NOTE: The H9c2 cells used here have been genetically

modified to express fluorescent mitochondria and have

also acquired a puromycin resistance gene. The addition

of this antibiotic ensures the growth of cells with the

resistance gene and, thus, fluorescent mitochondria.

2. Seed the H9c2 cells for the experiment when the cell

confluency reaches approximately 80% (T75 culture

flask, assessed by brightfield microscopy). Pre-heat the

medium and trypsin to 37°C for at least 15 min before

proceeding.
 

NOTE: It is possible to perform the experiment in parallel

with two or more different cell culture conditions. The

H9c2 cell confluency should not be above 80% to prevent

the loss of myoblastic cells. At 100% confluency, the cells

form myotubes and start differentiating.

3. Prepare for seeding the cells, operating in a sterile

laminar flow hood, by placing a #1.5 glass coverslip for

each experimental condition in a well of a 12-well plate.

Label each condition and the experimental details on the

12-well plate.

4. Move the cell culture flask from the incubator to the

work surface in the hood. Aspirate the medium using an

aspiration system or electronic pipette, and then wash

twice with 5 mL of PBS (room temperature).

5. Move the pre-heated trypsin to the work surface, and

aspirate the final PBS wash; then, add the pre-heated

trypsin to detach the cells (1 mL for a T75 culture flask).

Place the culture flask back into the incubator for 2-3 min

at 37°C.

https://www.jove.com
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6. Move the pre-heated medium to the work surface toward

the end of the incubation. Verify that cells have detached

using a brightfield microscope.

1. If all the cells have not detached, apply several

careful but firm taps to the side of the flask to detach

the remaining cells.

7. Return the culture flask to the work surface. Add 4 mL

of cell culture medium to the culture flask using an

electronic pipette to stop the trypsin action. When adding

culture medium to the flask, use the pipette to repeatedly

disperse the medium across the surface to detach and

gather the cells into a cell suspension.

8. Pipette the cell suspension (5 mL) from the flask into a

15 mL tube.

9. Centrifuge the cells at 200 x g for 5 min. Open the tube

in the hood, remove the supernatant by aspiration, and

resuspend the cell pellet gently in 5 mL of cell culture

media.

10. Assess the number of cells by analyzing a small volume

of the cell suspension in an automated cell counter. Note

the number of live cells per milliliter of culture media.

11. Move the desired volume (e.g., 150 µL per well) of

the cell suspension, calculated for a seeding density of

approximately 2 x 104  cells/cm2 , into a pre-labeled 15 mL

centrifuge tube. Add the pre-heated cell culture medium

to the 15 mL centrifuge tube at a pre-calculated volume

based on the number of wells. For 12-well plates, use a

total volume of 1 mL for each well.

12. Ensure that the diluted cell suspension is properly mixed

by pipetting the contents of the centrifuge tube up and

down several times before dispensing the appropriate

volume to each well. Once the cell suspension is

dispensed in the well, shake the plate in a carefully

controlled manner in each direction to better distribute

the cells throughout the wells. Place the 12-well plate into

the incubator at 37°C until the next day.

13. Check on the cells with a brightfield microscope to

evaluate the growth. If the cells have achieved sufficient

growth to approximately 80% confluency, proceed to the

next steps; otherwise, repeat the evaluation daily until

sufficient growth is reached.

2. Experimental procedure

1. Calculate the amounts needed of the materials

for the experiment according to the stock solution

concentrations. Thaw the frozen materials (30 mM CCCP

stock solution) at 37 °C, and set the cell culture medium

to pre-heat at 37 °C.

2. Once thawed, create a working solution of 10 µM CCCP

by diluting the stock solution (1:3,000) in cell culture

medium.
 

NOTE: Do not pipette volumes less than 1 µL.

3. Start the experimental treatments once all the necessary

materials are prepared and pre-heated. Aspirate the cell

culture medium from the wells of the 12-well plate, and

then quickly apply the fresh pre-heated medium to the

control wells and the pre-heated medium with 10 µM

CCCP solution to the test condition wells.

4. Incubate the 12-well plate in the 37°C cell incubator for

2 h. During the incubation period, prepare the fixation

solution.

5. For the preparation of the fixation solution, use pre-

made 4% paraformaldehyde (PFA) to dilute 25%

glutaraldehyde (GA) stock solution to 0.2% (1:125). Set

https://www.jove.com
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the solution to pre-heat at 37°C. For a 12-well plate, 500

µL is sufficient per well.
 

CAUTION: PFA and GA are toxic chemicals. Work in a

chemical hood with protective gear. See their respective

SDS for details.

6. When the incubation period is complete, remove the 12-

well plate from the incubator, and place it on the work

surface.
 

NOTE: The work no longer requires a sterile

environment.

7. Aspirate the cell culture medium from the wells, and apply

the pre-heated fixation solution. Return the 12-well plate

to the 37°C incubator for 20 min.

8. Aspirate the fixation solution upon completing the

incubation, and wash each well twice with room

temperature PBS. It is possible to pause the experiment

at this stage of the protocol and continue later.

1. If the experiment is paused, add 1 mL of PBS per

well, seal the 12-well plate with plastic film (parafilm),

and store at 4°C.

3. Staining and mounting of the cells on the
coverslips

1. Thaw DAPI (nuclear stain) stock, and spin down in a

mini centrifuge before opening. Prepare DAPI staining

solution by diluting DAPI stock in PBS (1:1,000).

2. Aspirate the PBS from the 12-well plate, and apply 1 mL

of DAPI staining solution to each well. Incubate in the

dark at room temperature for 5 min.

3. Aspirate the DAPI staining solution. Wash twice with 2

mL of PBS per well.

4. Prepare frosted glass microscope slides (glass slides) by

washing them in 70% ethanol, followed by three washes

in PBS. Carefully dry off the slides using lint-free paper

towels, and direct them toward the light to check for signs

of dust or grease.
 

NOTE: Gloves are required for this step.

5. Label the glass slides with the experimental details.

Transfer the mounting medium to a microcentrifuge tube,

and spin down in a mini centrifuge.

6. Prepare for mounting the coverslips by arranging the

workspace. Keep a 12-well plate with coverslips, labeled

glass slides, mounting medium, a pipette, 10 µL pipette

tips, lint-free paper towels, and tweezers at the ready.

7. Apply 10 µL of mounting medium (ProLong Glass) to a

prepared glass slide to mount a coverslip.

8. Pick up the coverslip from the 12-well plate using

tweezers, and dab moisture off the coverslip by briefly

touching the edge and back of the coverslip to the

prepared lint-free paper towel. Gently lower the coverslip

down onto the droplet of mounting medium.

9. Repeat the above two steps for each coverslip. Place the

mounting medium droplets to allow for between one and

four coverslips per glass slide.

10. Ensure the glass slides are on a flat surface to avoid the

mounted coverslips moving. Place the glass slides in a

dark location at room temperature overnight to allow the

mounting medium to set. The samples are now ready for

imaging. The experiment can be paused at this stage of

the protocol and continued later.

11. If the experiment is paused at this stage, then after

having allowed the samples to set overnight at room

temperature, cover them in aluminum foil to protect them

from light, and store them at 4°C.

https://www.jove.com
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4. Microscopy and imaging

1. Cover the samples in aluminum foil for transport (if not

already done).

2. Upon arrival at the microscopy facility, use double-

distilled H2O with microscope filter paper to clean the

PBS residues off the coverslips on the glass slides.

Check that there are no spots on the coverslips by

holding the glass slides toward a bright light.

3. Go through the startup procedure for the microscope.

Select the appropriate objective (Plan-Apochromat

63x/1.40 Oil M27), and add immersion medium.

4. Place the sample in the sample holder. Within the

microscope software, use the "Locate" tab to activate the

EGFP fluorescence illumination, and using the oculars,

manually adjust the z-level to have the sample in focus.

Turn off the fluorescence illumination upon finding the

focus.

5. Switch to the "Acquire" tab within the microscope

software. Use the "Smart Setup" to select the

fluorescence channels to be used for imaging. For this

experiment, the EGFP and DAPI channel presets were

selected.

6. Adjust each channel intensity from the initial settings

using the intensity histogram as a guide for optimized

signal strength. Imaging can now begin.

7. For imaging, use the software's option to have the

imaging positions placed in an array, and center the array

in the middle of the coverslip with 12 total positions to

be imaged. Verify that each position in the array contains

cells. If there are no cells, adjust the position to an area

with cells.

8. Adjust the focus of each position in the array using the

microscope software's autofocus, and follow this with a

manual fine adjustment to ensure as many mitochondria

as possible are in focus.
 

NOTE: The EGFP channel is used for these manual

adjustments.

9. Obtain the images using this method for each coverslip.

Save the image files, and proceed to the steps for

morphological analysis.

5. Generating simulated training data

1. Download the code10 , and unzip the contents. Follow

the instructions in README.md to set up the required

environment.

2. Navigate to the folder named "src", which is the home

folder for this project. The numbered folders inside

contain codes that are specific to different steps of using

the tool.
 

NOTE: Use the command "cd <<path>>" to navigate

to any subfolders of the code. To run any python

file, use the command, "python <<file name>>.py". The

presentation named "Tutorial.pptx" contains a complete

set of instructions for using the segmentation model.

3. Make a copy or use the folder "2. Mitochondria Simulation

Airy", and rename it (Airy is used here as it is the PSF

function closest to a confocal microscope, which was

used as the current microscope). Go into the folder

named "simulator".
 

NOTE: This folder contains all the files related to the

simulation of the training data. There are three sets of

parameters to be set for the simulation.

4. First, for the simulator in the batch config file "simulator/

batch/bxx.csv", set the parameters for about the sample,

https://www.jove.com
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including the number of mitochondria, the range of

diameters and the lengths of the structures, the range of

the z-axis that the structure exhibits, and the density of

the fluorophores.

5. Next, set the parameters related to the optical system.

1. This set includes the type of microscope (which

determines which PSF model is selected), the

numerical aperture (N.A.), the magnification (M), the

pixel size (in µm), the emission wavelength of the

fluorophores, and the background noise parameter,

etc.

2. Set the optical parameters of N.A., the magnification,

and the minimum wavelength of the dataset in the

file "simulator/microscPSFmod.py".

3. Set the desired value for the pixel size, and set the

emission wavelength of the dataset as a parameter

to the "process_matrix_all_z" function in the file

"simulator/generate_batch_parallel.py".

4. Set the last three parameters of the

function "save_physics_gt" in the file "simulator/

generate_batch_parallel.py". The parameters are

pixel size (in nm), size of the output image, and

max_xy.

6. Set the third set of parameters regarding the

output dataset, such as the size of the output

images, the number of tiles in each image, and

the number of total images, in the file "simulator/

generate_batch_parallel.py".

7. Run the file "simulator/generate_batch_parallel.py" to

start the simulation.

8. To obtain the final-size image, make a copy of the

folder named "5. Data Preparation and Training/data

preparation" in the home folder, and navigate into it.
 

NOTE: Each image of the synthetic dataset is formed

by creating a montage of four simulated images of 128

pixels x 128 pixels, which gives a final image size of 256

pixels x 256 pixels. This first generates many individual

tiles (around 12,000) for both the microscope images (in

the "output" folder) and ground truth segmentations (in

the "output/physics_gt" folder).

1. Set the parameters of the batch number, the number

of images per batch, and the range of noise in

"data_generator.py".

2. Run the file "data_generator.py" to create the

montage images.

3. Copy the folders named "image" and "segment"

into the "5. Data Preparation and Training/datatrain/

train" folder from the folder "5. Data Preparation and

Training/data preparation/data".

6. Deep learning-based segmentation

1. Train the segmentation model on the simulated images

as follows:

1. For training the segmentation model for a new

microscope, navigate to the "5. Data Preparation

and Training/train" folder, and set the parameters

of the batch size, the backbone model for the

segmentation, the number of epochs, and the

learning rate for training in the file "train_UNet.py".

2. Run "train_UNet.py" to start the training. The training

process displays the metric for the performance of

the segmentation on the simulated validation set.
 

https://www.jove.com
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NOTE: After the training is complete, the model

is saved as "best_model.h5" in the "5. Data

Preparation and Training/train" folder.

2. Test the model on real microscope images that are split

to a size that is desirable for the trained model through

the following steps.

1. Navigate to "6. Prepare Test Data", and copy the

".png" format files of the data into the folder "png".

2. Run the file "split_1024_256.py" to split the images

to a size that is desirable for the trained model. This

creates 256 pixel x 256 pixel sized crops of the

images in the "data" folder.

3. Copy the created "data" folder into the "7. Test

Segmentation" folder.

4. Navigate to the folder "7. Test Segmentation", and

set the name of the saved model to be used.

5. To segment the crops, run the file "segment.py".

The segmented images are saved into the "output"

folder.

7. Morphological analysis: Analysis of the
mitochondrial morphology of the two data groups,
"Glucose" and "CCCP"

1. Arrange the data to be analyzed (one folder for every

image, with each folder containing the segmented output

crops of one image).

2. Download and place the supplementary file named

"make_montage.py" in the folder named "7. Test

Segmentation".

3. Run the file "make_montage.py" to stitch the segmented

output back to the original size of the image.

4. Create a new folder named "9. Morphological Analysis"

inside the "src" folder.

5. Install the Skan16  and Seaborn Python packages

into the environment using the command "pip install

seaborn[stats] skan".
 

NOTE: The segmentation masks are skeletonized using

the library named Skan to enable the analysis of the

topology of each individual mitochondrion.

6. Place the supplementary file "analyze_mitochondria.py"

into the folder "9. Morphological Analysis".

7. Arrange the images of different groups of the

experiment into different folders inside the folder "7. Test

Segmentation".

8. Set the parameters of "pixel size" and "input path" in the

file "analyze_mitochondria.py".

9. Run the file "analyze_mitochondria.py" to run the code to

skeletonize and create plots of the analysis.

Representative Results

The results from the deep learning segmentations of

mitochondria in confocal images of fixed cardiomyoblasts

expressing fluorescent mitochondria markers showcase the

utility of this method. This method is compatible with other cell

types and microscopy systems, requiring only retraining.

Galactose-adapted H9c2 cardiomyoblasts with fluorescent

mitochondria were treated with or without CCCP for 2 h. The

cells were then fixed, stained with a nuclear dye, and mounted

on glass slides for fluorescence microscopy analysis. A

confocal microscope was utilized to acquire images of both

the control and CCCP-treated cells. We performed our

analysis on 12 confocal images, with approximately 60 cells

per condition. The morphologic state of the mitochondria

in each image was then determined and quantified. The

segmentation masks obtained from the trained model were

skeletonized to enable the analysis of the topology of each

https://www.jove.com
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individual mitochondrion for this experiment. The branch

length of the individual mitochondria was used as the

parameter for classification. The individual mitochondria were

classified into morphological classes by the following rule.

Specifically, any mitochondrial skeleton with a length less

than 1,500 nm was considered a dot, and the longer

mitochondria were further categorized into network or rod. If

there was at least one junction where two or more branches

intersected, this was defined as a network; otherwise, the

mitochondrion was classified as a rod. An example image

with the mitochondrial skeletons labeled with the morphology

classes is shown in Figure 3.

The mitochondrial morphology categorization in Figure 4A

shows that it is possible to detect significant changes when

CCCP is applied for 2 h; this is most clearly demonstrated by

the increase in dots for the CCCP-treated cells.

The mean branch length in Figure 4B is another avenue for

illustrating detectable and significant changes in morphology.

Both rods and networks were, as expected, significantly

reduced relative to control when the cells were treated with

CCCP. The significant increase in the mean branch lengths of

dots was also expected given the swelling that mitochondria

undergo when exposed to CCCP.

 

Figure 1: Pipeline for the simulation of fluorescence microscopy images. The pipeline includes (i) 3D geometry

generation, (ii) emitters and photokinetics emulation, (iii) 3D PSF convolution, (iv) noise addition, and (v) binarization. Please

click here to view a larger version of this figure.
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Figure 2: Steps of machine learning-based analysis of mitochondrial morphology. (1) The images to be segmented are

first cropped into sizes acceptable for the segmentation model. (2) The deep learning-based segmentation is applied to the

image crops. (3) The segmented output crops are stitched back to their original size. (4) The montaged segmentations are

skeletonized. (6) Morphological analysis is conducted based on the topology from the skeletonizations. Please click here to

view a larger version of this figure.
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Figure 3: Mitochondrial skeleton overlayed on the segmentation output of microscopy images. (A) The segmentation

output. (B) The straight-line skeleton (Euclidean distance between the start and end points of a branch) is overlayed on top

of the segmentation output. The color coding of the skeleton depicts the class of mitochondria. Networks are red, rods are

green, and dots are purple in color. Please click here to view a larger version of this figure.

 

Figure 4: Analysis of mitochondrial morphology. (A) An overview of the relative percentage of different morphological

categories based on the total mitochondrial length. (B) Comparison of the mean mitochondrial branch length between the

experimental conditions and between morphological categories. The x-axis displays the morphological categorizations, and

the y-axis displays the mitochondria mean branch length in nanometers (nm). Statistical significance in the form of p-values

is shown as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. Please click here to view a larger version of this figure.

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/64880/64880fig03large.jpg
https://www.jove.com/files/ftp_upload/64880/64880fig04large.jpg
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Figure 5: Failure case of segmentation. A high density of mitochondria is a challenging scenario for the segmentation

model. The colored skeleton shows the longest single mitochondria detected in the image. By going through the

length measurements, these scenarios can be detected and worked on to improve the segmentation results using the

morphological operator erode (slims the detected skeleton). Please click here to view a larger version of this figure.

Supplementary Files. Please click here to download the

files.

Discussion

We discuss precautions related to the critical steps in

the protocol in the paragraphs on "geometry generation"

and "simulator parameters". The paragraph titled "transfer

learning" discusses modifications for higher throughput

when adapting to multiple microscopes. The paragraphs

on "particle analysis" and "generating other subcellular

structures" refer to future applications of this method. The

paragraph on the "difference from biological truth" discusses

the different reasons why the simulations could differ from

real data and whether these reasons impact our application.

Finally, we discuss a challenging scenario for our method in

the paragraph "densely packed structures".

Geometry generation
 

To generate the 3D geometry of mitochondria, a simple 2D

structure created from b-spline curves as skeletons works

well for the creation of the synthetic dataset. These synthetic

shapes closely emulate the shapes of mitochondria observed

in 2D cell cultures. However, in the case of 3D tissue such

as heart tissue, the shape and arrangement of mitochondria

are quite different. In such cases, the performance of

the segmentation model may improve with the addition of

directionality in the simulated images.

Simulator parameters
 

Caution should be exercised when setting the parameters

of the simulator to ensure they match those of the data to

run the inference on, as failure to do this can lead to lower

performance on segmentation. One such parameter is the

signal-to-noise ratio (SNR) range. The range of the SNR of

https://www.jove.com
https://www.jove.com/
https://www.jove.com/files/ftp_upload/64880/64880fig05laregv2.jpg
https://www.jove.com/files/ftp_upload/64880/supplementary_files.zip
https://www.jove.com/files/ftp_upload/64880/supplementary_files.zip
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the data to be tested should match the values of the simulated

dataset. Additionally, the PSF used should match that of the

target test data. For example, model-trained images from a

confocal PSF should not be used to test images from an epi-

fluorescent microscope. Another parameter to pay attention

to is the use of additional magnification in the test data. If

additional magnification has been used in the test data, the

simulator should also be set appropriately.

Transfer learning
 

Transfer learning is the phenomenon of leveraging a learned

model trained on one task for use in another task. This

phenomenon is also applicable to our problem in relation

to different types of microscope data. The weights of the

segmentation model (provided with the source code) that

is trained on one type of microscopy data can be used

to initialize a segmentation model to be used on another

kind of optical microscope data. This allows us to train

on a significantly smaller subset of the training dataset

(3,000 images compared to 10,000), thereby reducing the

computational costs of simulation.

Particle analysis
 

Particle analysis can also be performed on the segmented

masks. This can provide information on the area and

curvature, etc., of the individual mitochondria. This

information can also serve as metrics for the quantitative

comparison of mitochondria (not used for this experiment).

For example, at present, we define the dot morphology

using a threshold based on the length of the mitochondria.

It may be useful, in some cases, to incorporate ellipticity

to better separate small rod-like mitochondria from puncta

or dot-like mitochondria. Alternatively, if certain biological

conditions cause the mitochondria to curl up, then curvature

quantification may be of interest to analyze the mitochondrial

population.

Generating other sub-cellular structures
 

The physics-based segmentation of subcellular structures

has been demonstrated for mitochondria and vesicles1 .

Although vesicles exhibit varying shapes, their sizes are

smaller, and they appear as simple spheres when observed

through a fluorescence microscope. Hence, the geometry

of vesicles is simulated using spherical structures of an

appropriate diameter range. This implies a change in the

function generates the geometry (cylinders in the case of

mitochondria and spheres in the case of vesicles) of the

structures and the respective parameters (step 5.4 in the

protocol section). Geometrically, the endoplasmic reticulum

and microtubules have also been simulated as tubular

structures17 . Modeling the endoplasmic reticulum with a

150 nm diameter and microtubules with an average outer

diameter of 25 nm and an inner hollow tube of 15 nm in

diameter provides approximations of the shapes of these

structures. Another parameter that will vary for each of these

sub-cellular structures is the fluorophore density. This is

calculated based on the distribution of the biomolecule to

which the fluorophores bind and the probability of binding.

Difference from biological ground truth
 

The simulated data used for the simulation-supervised

training of the deep learning model differ from real data in

many ways. (i) The absence of non-specific labeling in the

simulated data differs from real data, as there are often free-

floating fluorophores in the real data. This causes a higher

average background value in the real image. This difference

is mitigated by matching the SNR and setting the background

value such that it matches the observed real values. (ii) The

motion of subcellular structures and photokinetics are two

https://www.jove.com
https://www.jove.com/
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sources of dynamics in the system. Moving structures in live

cells (which move in the range of a few milliseconds) cause

motion blur. The exposure time is reduced during real data

acquisition to avoid the blurring effect. On the other hand, we

do not simulate timelapse and assume motionless structures;

this assumption is valid when the exposure time in the real

data is small. However, this assumption may produce an error

in the output if the exposure time of the real data is large

enough to introduce motion blur. Photokinetics, on the other

hand, is in the order of nanoseconds to microseconds and

can be omitted in the simulation, since the usual exposure

times of experiments are long enough (in the order of

milliseconds) to average the effects of photokinetics. (iii)

Noise in microscope images has different sources, and these

sources have different probability density functions. Instead of

modeling these individual sources of noise, we approximate

it as a Gaussian noise over a constant background. This

difference does not significantly alter the data distribution

for the conditions of low signal-to-background ratio (in the

range of 2-4) and when dealing with the macro density

of fluorophores1 . (iv) Artifacts in imaging can arise from

aberrations, drift, and systematic blurs. We assume the

microscope to be well aligned and that the regions chosen for

analysis in the real data are devoid of these artifacts. There

is also the possibility of modeling some of these artifacts in

the PSF18,19 ,20 .

Densely packed structures
 

The difficulties with not being able to differentiate overlapping

rods from networks is a persistent problem in the

segmentation of 2D microscopy data. An extremely

challenging scenario is presented in Figure 5, where the

mitochondria are densely packed, which leads to sub-optimal

results in the segmentation model and the following analysis.

Despite this challenge, using morphological operators in such

situations to slim the skeletonization can help to break these

overly connected networks while allowing significant changes

in all the mitochondrial morphology categories to still be

detected. Additionally, the use of a confocal rather than a

widefield microscope for imaging is one method to partially

mitigate this problem by eliminating out-of-focus light. Further,

in the future, it would be useful to perform 3D segmentation to

differentiate mitochondria that intersect (i.e., physically form

a network) from rod-like mitochondria whose projections in a

single plane overlap with each other.

Deep-learning segmentation is a promising tool that offers to

expand the analysis capabilities of microscopy users, thus

opening the possibility of automated analysis of complex data

and large quantitative datasets, which would have previously

been unmanageable.
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