Il metodo presentato prevede lo stiramento uniassiale di idrogel morbidi 3D incorporati nella gomma siliconica, consentendo al contempo la microscopia confocale viva. Vengono dimostrate la caratterizzazione dei ceppi idrogel esterni e interni e l’allineamento delle fibre. Il dispositivo e il protocollo sviluppati possono valutare la risposta delle cellule a vari regimi di deformazione.
Le forze esterne sono un fattore importante nella formazione, nello sviluppo e nella manutenzione dei tessuti. Gli effetti di queste forze sono spesso studiati utilizzando metodi specializzati di stretching in vitro. Vari sistemi disponibili utilizzano barelle basate su substrato 2D, mentre l’accessibilità delle tecniche 3D per filtrare gli idrogel morbidi è più limitata. Qui descriviamo un metodo che consente lo stiramento esterno di idrogel morbidi dalla loro circonferenza, utilizzando una striscia elastica in silicone come portacampcampo. Il sistema di stretching utilizzato in questo protocollo è costruito con parti stampate in 3D ed elettronica a basso costo, rendendolo semplice e facile da replicare in altri laboratori. Il processo sperimentale inizia con idrogel di fibrina morbida spessi (>100 μm) (modulo elastico di ~ 100 Pa) in un ritaglio al centro di una striscia di silicone. I costrutti in silicone-gel vengono quindi attaccati al dispositivo di stiramento stampato e posizionati sullo stadio del microscopio confocale. Sotto microscopia dal vivo viene attivato il dispositivo di allungamento e i gel vengono immagini a varie grandezze di allungamento. L’elaborazione delle immagini viene quindi utilizzata per quantificare le deformazioni del gel risultanti, dimostrando ceppi relativamente omogenei e allineamento delle fibre attraverso lo spessore 3D del gel (asseZ). I vantaggi di questo metodo includono la capacità di filtrare idrogel estremamente morbidi in 3D durante l’esecuzione della microscopia in situ e la libertà di manipolare la geometria e le dimensioni del campione in base alle esigenze dell’utente. Inoltre, con un adeguato adattamento, questo metodo può essere utilizzato per allungare altri tipi di idrogel (ad esempio collagene, poliacrilammide o polietilene glicole) e può consentire l’analisi delle cellule e la risposta dei tessuti alle forze esterne in condizioni 3D più biomimetiche.
La risposta dei tessuti alle forze meccaniche è parte integrante di una vasta gamma di funzioni biologiche, tra cui l’espressione genica1,ladifferenziazione cellulare 2e il rimodellamento deitessuti 3. Inoltre, i cambiamenti indotti dalla forza nella matrice extracellulare (ECM) come l’allineamento e la densificazione delle fibre possono influire sul comportamento cellulare e sullaformazione dei tessuti 4,5,6. La struttura in rete fibrosa dell’ECM ha intriganti proprietà meccaniche, come elasticità non lineare, deformazione non affini e deformazioni plastiche7,8,9,10,11,12. Queste proprietà hanno un impatto sul modo in cui le cellule e il microambiente circostante rispondono alleforze meccaniche esterne 13,14. Comprendere come l’ECM e i tessuti rispondono alle forze meccaniche consentirà di progredire nel campo dell’ingegneria tissutale e nello sviluppo di modelli computazionali e teorici più accurati.
I metodi più comuni per allungare meccanicamente i campioni si sono concentrati su substrati 2D carichi di cellule per esplorare gli effetti sul comportamento cellulare. Questi includono, ad esempio, l’applicazione di deformazione ai substrati di polidimetilsilossano (PDMS) e l’analisi degli angoli di riorientamento cellulare in relazione alla direzione diallungamento 15,16,17,18,19. Tuttavia, i metodi che studiano la risposta degli idrogel incorporati in cellule 3D all’allungamento esterno, una situazione che imita più da vicino il microambiente tissutale, sono più limitati. I progressi verso i metodi di stretching 3D sono di particolare importanza perché le cellule si comportano in modo diverso sui substrati 2D rispetto alle matrici 3D20. Questi comportamenti includono riallineamento cellulare, livelli di espressione proteica e modellidi migrazione 21,22,23.
I metodi e i dispositivi che consentono lo stretching del campione 3D includono sia quelli disponibili in commercio24,25,26,27,28 e quelli sviluppati per la ricerca di laboratorio29. Questi metodi utilizzano tubi in silicone distensibili30,camere multi-pozzo31,morsetti26,32,bioreattori11,33,slittenti34,35,36e magneti37,38. Alcune tecniche generano allungamento che deforma localmente gli idrogel 3D, ad esempio tirando aghi da due singoli punti nel gel5, mentrealtre consentono la deformazione dell’intera massa del gel16. Inoltre, la maggior parte di questi sistemi si concentra sull’analisi del campo di deformazione nel piano X-Y, con informazioni limitate sul campo di deformazione nella direzione Z. Inoltre, solo una manciata di questi dispositivi è in grado di imaging microscopico in situ. La sfida principale con l’imaging ad alto ingrandimento in situ (ad esempio, microscopio confocale) è la limitata distanza di lavoro di poche centinaia di micron dalla lente oggettiva al campione. I dispositivi che consentono l’imaging dal vivo durante l’allungamento sacrificano l’uniformità dello sforzo nell’asse Zo sono relativamente complessi e difficili da riprodurre in altri laboratori39,40.
Questo approccio all’allungamento degli idrogel 3D consente un ceppo uniassiale statico o ciclico durante la microscopia confocale viva. Il dispositivo di stretching (indicato come “Smart Cyclic Uniaxial Stretcher – SCyUS”) è costruito utilizzando parti stampate in 3D e hardware a basso costo, consentendo una facile riproduzione in altri laboratori. Attaccato al dispositivo è una gomma siliconica disponibile in commercio con un ritaglio geometrico al centro. I componenti dell’idrogel sono polimerizzati per riempire il ritaglio. Durante la polimerizzazione, gli idrogel biologici, come la fibrina o il collagene, aderiscono naturalmente alle pareti interne del cut-out. Utilizzando lo SCyUS, la striscia di silicone viene allungata in modo iniessiale, trasferendo ceppi controllati all’idrogel 3Dincorporato 41.
Questo sistema consente una combinazione unica di funzionalità e vantaggi rispetto ad altri metodi esistenti. In primo luogo, il sistema consente lo stiramento uniassiale di idrogel morbidi 3D spessi (>100 μm di spessore, rigidità <1 kPa) dalla loro periferia, con deformazione omogenea Zin tutto l’idrogel. Questi idrogel sono troppo morbidi per essere afferrati e allungati dalle tecniche di trazione convenzionali. In secondo luogo, il dispositivo di stretching può essere facilmente replicato in altri laboratori poiché la stampa 3D è prontamente disponibile per i ricercatori e l’elettronica utilizzata nel design è a basso costo. In terzo luogo, e forse la caratteristica più attraente, la geometria e le dimensioni del ritaglio nella striscia di silicone possono essere facilmente manipolate, consentendo gradienti di deformazione tonnibili e condizioni limite, nonché l’uso di una varietà di volumi di campioni, fino a pochi microlitri.
Il protocollo presentato consiste nello stampaggio del gel di fibrina in dischi di circa 2 mm di diametro in strisce di gomma siliconica spesse 0,5 mm procedenti per tratto uniassiale sotto microscopia confocale viva. Di seguito vengono discusse in dettaglio le procedure sperimentali per misurare e analizzare i ceppi che agiscono sul ritaglio geometrico, i ceppi interni sviluppati nell’idrogel, nonché il conseguente allineamento delle fibre dopo varie manipolazioni elastiche. Infine, viene discussa la possibilità di incorporare cellule nell’idrogel ed esporle a un tratto esterno controllato.
Il metodo e il protocollo qui presentati si basano in gran parte sul nostro precedente studio di Roitblat Riba etal.
I principali vantaggi del metodo presentato rispetto agli approcci esistenti includono la possibilità di sforzare idrogel 3D molto morbidi (modulo elastico di ~ 100 Pa) dalla loro circonferenza e sotto imaging confocale dal vivo. Altri metodi sono solitamente limitati nella loro capacità di applicare campi di deformazione nell’ass…
The authors have nothing to disclose.
Alcune figure incluse qui sono state adattate su autorizzazione del Copyright Clearance Center: Springer Nature, Annals of Biomedical Engineering. Sforzo idrogel 3D con ceppi uniformi dell’asse Z, consentendo al contempo l’imaging di microscopia dal vivo, A. Roitblat Riba, S. Natan, A. Kolel, H. Rushkin, O. Tchaicheeyan, A. Lesman, Copyright© (2019).
https://doi.org/10.1007/s10439-019-02426-7
Alexa Fluor 546 carboxylic acid, succinimidyl ester | Invitrogen | A20002 | |
Cell Medium (DMEM High Glucose) | Biological Industries | 01-052-1A | Add 10% FBS, 1% PNS, 1% L-Glutamine, 1% Sodium Pyruvate |
Cover Slip #1.5 | Bar-Naor Ltd. | BN72204-30 | 22×40 mm |
DIMETHYL SULPHOXIDE 99.5% GC DMSO | Sigma-Aldrich Inc. | D-5879-500 ML | |
Dulbecco's Phosphate-Buffered Saline | Biological Industries | 02-023-1A | |
EVICEL Fibrin Sealant (Human) | Omrix Biopharmaceuticals | 3902 | Fibrinogen: 70 mg/mL, Thrombin: 800-1200 IU/mL |
Fibrinogen Buffer | N/A | Recipe for 1L: 7g NaCl, 2.94g trisodium citrate dihydrate, 9g glycine, 20g arginine hydrochloride & 0.15g calcium chloride dihydrate. Bring final volume to 1L with PuW (pH 7.0-7.2) | |
Fluorescent micro-beads FluoSpheres (1 µm) | Invitrogen | F8820 | Orange (540/560) Provided as suspension (2% solids) in water plus 2 mM sodium azide |
High-Temperature Silicone Rubber | McMaster-Carr | 3788T41 | 580 µm-thick E = 1.5 Mpa Poisson Ratio = 0.48 Tensile Strength = 4.8 MPa Upper limit of stretch = +300% engineering strain |
HiTrap desalting column 5 mL (Sephadex G-25 packed) | GE Healthcare | 17-1408-01 | |
HIVAC-G High Vacuum Sealing Compound | Shin-Etsu Chemical Co., Ltd. | HIVAC-G 100 | |
ImageJ FIJI software39 | National Institute of Health, Bethesda, MD | Version 1.8.0_112 | |
Microcontroller (Adruino Uno + Adafruit Motorshield v2.3) | Arduino/Adafruit | Arduino-DK001/Adafruit-1438 | |
MicroVL 21R Centrifuge | Thermo Scientific | 75002470 | |
Parafilm | Bemis | PM-996 | |
Primovert Light Microscope | Carl Zeiss Suzhou Co., Ltd. | 491206-0011-000 | |
SCyUS CAD (Solidworks) | Dassault Systèmes | N/A | |
SCyUS Code37 | N/A | N/A | |
Servomotor – TowerPro SG-5010 | Adafruit | 155 | |
SL 16R Centrifuge | Thermo Scientific | 75004030 | For 50 mL tubes |
Sterile 10 cm non-culture plates | Corning | 430167 | |
Thrombin buffer | N/A | Recipe for 1L: 20g mannitol, 8.77g NaCl, 2.72g sodium acetate trihydrate, 24 mL 25% Human Serum Albumin, 5.88g calcium chloride. Bring final volume to 1L with PuW (pH 7.0) | |
Trypsin EDTA Solution B (0.25%), EDTA (0.05%) | Biological Industries | 03-052-1B | |
USB Cable (Type B Male to Type A Male) | N/A | N/A | |
Zeiss LSM 880 Confocal Microscope | Carl Zeiss AG | 2811000417 | |
ZEN 2.3 SP1 FP3 (black) | Carl Zeiss AG | Release Version 14.0.0.0 |