Questo protocollo delinea l’utilizzo della trasformazione mediata da Agrobacterium tumefaciens (AMT) per l’integrazione di geni di interesse nel genoma nucleare della microalga verde Chlorella vulgaris, portando alla produzione di trasformanti stabili.
La trasformazione mediata dall’Agrobacterium tumefaciens (AMT) funge da strumento ampiamente utilizzato per manipolare i genomi delle piante. Tuttavia, A. tumefaciens mostra la capacità di trasferimento genico a una vasta gamma di specie. Numerose specie di microalghe non dispongono di metodi consolidati per integrare in modo affidabile i geni di interesse nel loro genoma nucleare. Per sfruttare i potenziali benefici della biotecnologia delle microalghe, sono fondamentali strumenti di manipolazione del genoma semplici ed efficienti. In questo articolo, viene presentato un protocollo AMT ottimizzato per la specie di microalghe industriali Chlorella vulgaris, utilizzando la proteina fluorescente verde reporter (mGFP5) e il marcatore di resistenza agli antibiotici per l’igromicina B. I mutanti sono selezionati attraverso la placcatura su terreni Tris-Acetato-Fosfato (TAP) contenenti igromicina B e cefotaxima. L’espressione di mGFP5 è quantificata tramite fluorescenza dopo oltre dieci generazioni di subcoltura, indicando la trasformazione stabile della cassetta T-DNA. Questo protocollo consente la generazione affidabile di più colonie transgeniche di C. vulgaris in meno di due settimane, impiegando il vettore di espressione vegetale pCAMBIA1302 disponibile in commercio.
L’Agrobacterium tumefaciens, un batterio gram-negativo trasmesso dal suolo, possiede una capacità unica di trasferimento genico tra regni, che gli è valsa il titolo di “ingegnere genetico naturale”1. Questo batterio può trasferire il DNA (T-DNA) da un plasmide che induce il tumore (Ti-Plasmide) nelle cellule ospiti attraverso un sistema di secrezione di tipo IV, con conseguente integrazione ed espressione del T-DNA all’interno del genoma ospite 1,2,3,4. Nell’ambiente naturale, questo processo porta alla formazione di tumori nelle piante, comunemente noti come malattia della galla della corona. Tuttavia, l’Agrobacterium può anche trasferire il T-DNA in vari altri organismi, tra cui lieviti, funghi, alghe, embrioni di ricci di mare e persino cellule umane in condizioni di laboratorio 5,6,7,8.
Sfruttando questo sistema naturale, la trasformazione mediata da Agrobacterium tumefaciens (AMT) consente l’integrazione casuale di geni di interesse nel genoma nucleare di una cellula ospite modificando la regione T-DNA del plasmide Ti. A questo scopo, un vettore di espressione delle piante AMT ampiamente utilizzato è pCAMBIA13029. I ricercatori possono utilizzare semplici flussi di lavoro di clonazione in E. coli prima di trasferire il vettore desiderato in A. tumefaciens per il successivo trasferimento all’ospite di interesse.
Le microalghe verdi sono eucarioti che condividono molte somiglianze con le piante terrestri, ma sono altamente recalcitranti alla modificazione genetica. Tuttavia, la trasformazione genetica svolge un ruolo cruciale sia nella ricerca di base che in quella biotecnologica delle microalghe. In diverse specie di microalghe, in particolare Chlamydomonas reinhardtii, la trasformazione genetica tramite AMT ha introdotto con successo transgeni come l’interleuchina-2 umana (hIL-2), il dominio legante il recettore 2 del coronavirus 2 della sindrome respiratoria acuta grave (SARS-CoV-2 RBD) e due peptidi antimicrobici (AMP)10,11,12,13. Tra queste, la Chlorella vulgaris, una specie di alga verde meno esigente e a crescita rapida, ha un potenziale significativo per la produzione sostenibile di carboidrati, proteine, nutraceutici, pigmenti e altri composti di alto valore14. Tuttavia, la mancanza di strumenti affidabili per la creazione di ceppi transgenici di C. vulgaris ostacola il suo progresso commerciale. Poiché è stato pubblicato solo un numero limitato di lavori che utilizzano AMT in C. vulgaris15, e date le notevoli differenze tra la coltivazione di piante e microalghe, l’ottimizzazione del protocollo AMT diventa essenziale.
In questo studio, i ricercatori hanno inserito la proteina fluorescente verde (mGFP5) a valle del promotore 35S del virus del mosaico del cavolfiore (CamV) e hanno aggiunto un tag di istidina per utilizzarlo come gene reporter per l’espressione proteica. I trasformanti sono stati selezionati utilizzando l’igromicina B e, dopo la subcoltura per oltre venti generazioni, la trasformazione è rimasta stabile. Il plasmide pCAMBIA1302 impiegato in questo lavoro può essere facilmente adattato per contenere qualsiasi gene di interesse. Inoltre, il metodo e i materiali presentati possono essere adattati per altre specie di alghe verdi con un promotore attivo CamV35S, poiché questo promotore viene utilizzato per la selezione dell’igromicina.
L’efficienza della trasformazione è associata a diversi parametri. La scelta dei ceppi di A. tumefaciens utilizzati per l’AMT è fondamentale. AGL-1 è uno dei ceppi più invasivi scoperti e, per questo motivo, è stato utilizzato abitualmente nell’AMT vegetale. Anche l’integrazione del mezzo di induzione con glucosio (15-20 mM) è importante per l’efficienza dell’AMT. Considerando che C. vulgaris può crescere sia in condizioni fototrofiche che eterotrofe, il glucosio o altre fonti di carbonio vengono…
The authors have nothing to disclose.
Gli autori desiderano ringraziare il Prof. Paul Hooykaas per aver gentilmente fornito il vettore pCAMBIA1302 e l’Agrobacterium tumefaciens AGL1 dell’Istituto di Biologia di Leida, Università di Leiden, Paesi Bassi. Gli autori desiderano anche ringraziare Eva Colic per il suo aiuto nella crescita dei trasformanti fluorescenti. Questo lavoro è stato finanziato dal Natural Sciences and Engineering Research Council of Canada e dal programma Mitacs Accelerate.
1 Kb Plus DNA ladder | FroggaBio | DM015 | |
Acetosyringone | Fisher Scientific | D26665G | |
Agrobacterium tumefaciens | Gold Biotechnologies | Strain: AGL-1; Gift from Prof. Paul Hooykaas | Genotype: C58 RecA (RifR/CarbR) pTiBo542DT-DNA |
Biotin | Enzo Life Sciences | 89151-400 | |
CaCl2·2H2O | VWR | BDH9224-1KG | |
Cefotaxime | AK Scientific | J90010 | |
Chlorella vulgaris | University of Texas at Austin Culture Collection of Algae | Strain: UTEX 395 | Wildtype strain |
CoCl2·6H2O | Sigma Aldrich | C8661-25G | |
CuSO4·5H2O | EMD Millipore | CX2185-1 | |
FeCl3·6H2O | VWR | BDH9234-500G | |
Gene Pulser Xcell Electroporator | Bio-Rad | 1652662 | Main unit equipped with PC module. |
GeneJET Plant Genome Purification Kit | Thermo Scientific | K0791 | |
Glacial acetic acid | VWR | CABDH3093-2.2P | |
Glycerol | BioBasic | GB0232 | |
HEPES Buffer | Sigma Aldrich | H-3375 | |
Hygromycin B | Fisher Scientific | AAJ6068103 | |
K2HPO4 | VWR | BDH9266-500G | |
Kanamycin | Gold Biotechnologies | K-250-25 | |
KH2PO4 | VWR | BDH9268-500G | |
MgSO4·7H2O | VWR | 97062-134 | |
MnCl2·4H2O | JT Baker | BAKR2540-01 | |
Na2CO3 | VWR | BDH7971-1 | |
Na2EDTA·2H2O | JT Baker | 8993-01 | |
Na2MoO4·2H2O | JT Baker | BAKR3764-01 | |
NaCl | VWR | BDH7257-7 | |
NaH2PO4 H2O | Millipore Sigma | CA80058-650 | |
NaNO3 | VWR | BDH4574-500G | |
NEBExpress Ni Resin | NewEngland BioLabs | NEB #S1427 | |
NH4Cl | VWR | BDH9208-500G | |
pCAMBIA1302 | Leiden University | Gift from Prof. Paul Hooykaas | pBR322, KanR, pVS1, T-DNA(CaMV 35S/HygR/CaMV polyA, CaMV 35S promoter/mgpf5-6xhis/NOS terminator) |
Polypropylene Columns (5 mL) | QIAGEN | 34964 | |
Precision Plus Protein Unstained Protein Standards, Strep-tagged recombinant, 1 mL | Bio-Rad | 1610363 | |
Rifampicin | Millipore Sigma | R3501-1G | |
SunBlaster LED Strip Light 48 Inch | SunBlaster | 210000000906 | |
Synergy 4 Microplate UV/Vis spectrometer | BioTEK | S4MLFPTA | |
Tetracycline | Thermo Scientific Chemicals | CAAAJ61714-14 | |
TGX Stain-Free FastCast Acrylamide Kit, 12% | Bio-Rad | 1610185 | |
Thiamine | TCI America | T0181-100G | |
Tris Base | Fisher Scientific | BP152-500 | |
Tryptone | BioBasic | TG217(G211) | |
Vitamin B12 (cyanocobalamin) | Enzo Life Sciences | 89151-436 | |
Yeast Extract | BioBasic | G0961 | |
ZnSO4·7H2O | JT Baker | 4382-01 |