凍結解凍法は、架橋剤を用いたキトサンポリ(ビニルアルコール)ヒドロゲルの製造に用いられる。この方法では、得られたヒドロゲルの特性および用途に影響を及ぼす可能性のある凍結条件(温度、サイクル数)およびポリマー比を考慮することが重要である。
キトサンポリ(ビニルアルコール)ヒドロゲルは、有毒な架橋剤を用いずに凍結解凍法により製造することができる。これらのシステムの適用は、凍結条件およびポリマーの種類および比率に依存する特性(例えば、空隙率、柔軟性、膨潤能、薬物負荷および薬物放出能力)によって制限される。このプロトコルは、キトサンおよびポリ(ビニルアルコール)からヒドロゲルをポリマー組成物の50/50 w/w%で調製し、凍結温度(-4°C、-20°C、-80°C)および凍結解凍サイクル(4、5、6凍結サイクル)を変化させる方法を記述します。ヒドロゲルのFT-IRスペクトル、SEM顕微鏡写真及びポロシメトリーデータが得られた。また、膨潤能力および薬物のローディングおよび二十種の放出を評価した。SEM顕微鏡写真とポロシメトリーの結果は、細孔サイズが小さくなり、気孔率が低い温度で増加することを示しています。腫脹率は、軽度の凍結温度で高かった。ヒドロゲルからのジフルーニサルの放出が研究されている。すべてのネットワークは30時間の薬物放出を維持し、単純な拡散メカニズムがコルスマイヤー・ペパスおよび樋口モデルに従ってジフニザル放出を調節することが観察されている。
近年、ヒドロゲルは含水率の高い三次元ネットワークであり、柔らかく柔軟であるため、自然組織を容易に模倣できるため、生物医学分野に大きな関心を集めています。また、それらは生理的温度およびpHで水性媒体に溶解しないが、大きな腫脹2を示す。ヒドロゲルは、組織工学足場、衛生製品、コンタクトレンズ、および創傷ドレッシングとして機能することができます。彼らは、活性化合物および薬物をトラップして放出することができるので、それらは薬物送達システム3として使用される。それらの用途に応じて、ヒドロゲルは、天然または合成ポリマー、またはその両方の組み合わせから作製することができ、最良の特性を得るために4。
ヒドロゲルの特性は、多くの物理的および化学的要因の結果です。物理的なレベルでは、その構造と形態は、その空隙率、細孔サイズおよび細孔分布5に依存する。化学的及び分子レベルにおいて、ポリマー型、ポリマー鎖中の親水性基含有量、架橋点型、及び架橋密度は、膨潤能能力及び機械的性質を決定する因子である6、7である。
ネットワークを形成するために使用される架橋剤の種類に応じて、ヒドロゲルは、化学ヒドロゲルまたは物理的ヒドロゲルとして分類される。化学ヒドロゲルは、UVおよびガンマ照射を介して形成される鎖間の共有相互作用によって結合されるか、架橋剤7、8を使用する。化学ヒドロゲルは、通常、強く、耐性であるが、一般的に、架橋剤は細胞に有毒であり、その除去は困難であるため、その適用は限られている。一方、非共有相互作用を介したポリマー鎖の接続により物理的ヒドロゲルが形成され、架橋剤4、9の使用を回避する。ネットワーク内の主な非共有相互作用は疎水性相互作用、静電力、相補的および水素境界7である。
ポリ(ビニルアルコール)(PVA、図1a)は、凍結解凍法10、11を介して架橋剤フリーヒドロゲルから得ることができる優れた機械的性能および生体適合性を有する合成および水溶性ポリマーである。このポリマーは、12個を凍結している場合に、鎖の-OH基(結晶性ゾーン)間の水素結合の濃縮ゾーンを形成する能力を有する。これらの結晶帯はネットワーク内の架橋点として機能し、結晶水が膨張し、PVA立体構造が凍結13時にアイソタクティックからシンジオタクチックPVAに変化するポリマー鎖の接近という2つの事象によって促進される。凍結乾燥のために、水結晶は昇華され、ヒドロゲル14内の細孔である空隙空間を残す。より良い特性を有するヒドロゲルを得るために、PVAは他のポリマーと容易に組み合わせることができる。
その意味で、キトサンは天然源由来の唯一の生体高分子であり、正電荷を有する選択肢である。キチンの脱アセチル化により得られ、β-1,4連結D-グルコサミン(脱アセチル化単位)とN-アセチル-D-グルコサミン(アセチル化単位)15,16(図1b)のランダムな組み合わせから構成されている。キトサンはヒト酵素によって生分解性であり、生体適合性である。また、そのカチカチ性によって、細胞表面の負電荷と相互作用することができ、そしてこの性質は、その抗菌活性17と関連している。このポリマーは、処理が容易です。しかし、その機械的特性は十分ではなく、より良い特性を持つ複合体を形成するためにいくつかの材料が追加されました。
キトサンおよびPVAの特定の特性を考慮すると、ヒドロゲルの製造が成功し、有毒架橋剤の使用を回避するために凍結解凍法2、18によって達成された。キトサンPVAヒドロゲルでは、PVAの結晶性ゾーンも形成され、キトサン鎖が相互に浸透し、PVA中の-NH2基および-OH基との単純な水素結合を形成する。最終的なキトサンPVAヒドロゲルは機械的に安定しており、膨潤率が高く毒性が低く、抗菌効果は18である。ただし、調製に使用される凍結条件(温度、時間、サイクル数)によっては、最終的な特性が変化する場合があります。いくつかの研究は、凍結サイクルの数を増やすと腫れの程度を減少させ、引張強度19、20を増加させると報告しています。ネットワークを強化するために、ガンマやUV放射線、化学架橋剤などの他の薬剤が、凍結解凍製剤21、22、23の後に追加的に使用されている。キトサンの割合が高いヒドロゲルは、より多孔質なネットワークと高い膨潤能力を有するが、強度と熱安定性は低い。この文脈では、標的アプリケーションに適したヒドロゲルを得るための調製条件を考慮することが重要である。
この研究の目的は、凍結条件(凍結温度およびサイクル数)がCS-PVAヒドロゲルの最終的な特性にどのように影響するかを詳細に提示することです。FT-IRスペクトル、形態学的および気孔率特性および膨潤能、ならびに薬物の負荷および放出能を評価した。放出試験では、ジフルニサル(図1c)をモデル薬剤として用いた。
凍結解凍法は、生体医、医薬または化粧品用途34、35、36に焦点を当てた生体適合性ヒドロゲルを調製するのに適したプロセスである。この方法の最も重要な利点は、ヒドロゲルを調製する他の公知の方法と比較して、架橋剤の使用が回避され、人体34に炎症反応または有害作用を引き起こす可能性がある?…
The authors have nothing to disclose.
著者は、ポロシメトリー測定のサポートのためにC.ルズリアガに感謝しています。著者はまた、財政支援のためのスペインの大臣デ・エコノミア・イ・コンペティビダード(プロジェクトMAT2014-59116-C2-2-R)とPIUNA(ref. 2018-15)に感謝します。著者らはまた、ディペタメント・デ・フィシカ・ユニゾンのアミール・マルドナード博士に対し、サポートと有益なコメントと、SEM画像のDIPM-UNISONのSEバレル・イバラ博士と、ルビオ・ファーマ・イ・アソシアドスS.A.デ・C.V.の資金援助を認めたい。MEマルティネス・バルボサは、レッド・テマティカ・デ・ナノシエンシアス・イ・ナノテクノロジア・デル・プログラム・デ・レデス・テマティタス・デル・CONACyTの資金援助に加えて、CONACyT(メキシコ)プロジェクトNo.104931およびNo.256753に感謝したいと思います。そして、また、プロジェクトUSO316001081。MDフィゲロア・ピッツァーノは、財政支援(奨学金373321)のためのCONACyTを認めたい。
Materials: | |||
Chitosan medium molecular weight | Sigma-Aldrich | 448877 | Mw determined by capillary viscometry (637,000 Da) and deacetylation degree of 70% |
Diflunisal (2'-4'-difluoro-4-hydroxy-3-biphenyl-carboxylicacid) | Merck | ||
Glacial acetic acid | Sigma-Aldrich | 1005706 | |
Poly(vinyl alcohol) | Sigma-Aldrich | 341584 | Mw 89,000-98,000, 99+% hydrolyzed |
Equipment: | |||
Cressington Sputter Coater 108 auto | TED PELLA INC | ||
Cryodos Lyophilizator | Telstar | ||
Falcon tubes | Thermo Fisher Company | ||
FT-IR spectroscopy | Nicolet iS50 | in ATR mode | |
Lyophilizator | LABCONCO | ||
Micromeritics Autopore IV 9500 | Micromeritics | ||
Scanning electron microscope | Pemtron SS-300LV | ||
UV-visible spectrophotometer | Agilent 8453 |