概要

ヒト腎臓組織における局所転写論を明らかにするレーザー微小解剖の応用

Published: June 09, 2020
doi:

概要

糸球体、近頭尿細管、太い上昇肢、集結管およびインタースティジウムを含むヒト腎臓のサブセグメントのレーザーマイクロディシセクションのプロトコルについて述べている。次いで、RNAを得られたコンパートメントから単離し、RNAシーケンシングを行い、各サブセグメント内のトランスクリプトームシグネチャの変化を決定する。

Abstract

ヒト腎臓組織の遺伝子発現解析は、恒常性および疾患病態生理を理解する重要なツールである。この技術の解像度と深さを高め、組織内の細胞のレベルにそれを拡張することが必要です。単一核および単一細胞RNAシーケンシングの使用は広く普及しているが、組織解離から得られた細胞の発現シグネチャは空間的文脈を維持しない。特定の蛍光マーカーに基づくレーザーマイクロディション(LMD)は、既知の局在化を伴う特定の構造および対象細胞群の単離を可能にし、それによって腎臓組織における空間的に固定されたトランスクリプトーミックシグネチャの取得を可能にする。迅速な蛍光ベースの染色に導かれたLMD方法論を最適化し、ヒト腎臓内の5つの異なるコンパートメントを分離し、その後のRNAシーケンシングを貴重なヒト腎臓組織標本から行います。また、収集した検体の妥当性の評価を可能にする品質管理パラメータも提示します。この原稿で概説されているワークフローは、高い信頼を持ってサブセグメントの転写シグネチャを分離するこのアプローチの実現可能性を示しています。ここで提示される方法論的アプローチは、関連する抗体マーカーの置換を伴う他の組織タイプにも適用され得る。

Introduction

組織標本の研究における技術の進歩は、様々な臓器における健康と病気の状態の理解を改善しました。このような進歩は、病理学が限られた領域または特定の細胞タイプで始まることができるが、臓器全体に重要な意味を持つことを強調している。したがって、現在の個別化医療の時代において、細胞レベルと地域レベルの両方で生物学を理解することが重要であり、世界的に1.これは、病理学的ストレスを開始および/または応答する様々な特殊な細胞および構造で構成される腎臓において特に当てはまる。様々なタイプのヒト腎臓病の病因はまだよく分かっていない。ヒト腎臓における特定の管状のセグメント、構造、または間質の領域における遺伝子発現の変化を研究する方法論を生み出すと、疾患の病因を知らせることができる領域固有の変化を発見する能力が高まる。

ヒト腎臓生検検は限られた貴重な資源です。したがって、腎臓組織のトランスクリプトミクスを問い合わせた技術は、組織を減態するために最適化されるべきである。細胞および地域レベルでのトランスクリプトミクスを研究するために利用可能な方法は、単一細胞RNAシーケンシング(scRNaseq)、単一核RNaseq(snRNaseq)、その場空間ハイブリダイゼーション、およびレーザーマイクロダイスセクション(LMD)を含む。後者は、下流RNAシーケンシングおよび分析2、3、4、5のために、組織切片内の対象となる領域または構造を正確に分離するために適しています。LMDは、解剖中に蛍光ベースのイメージングを使用して検証されたマーカーに基づいて、特定の細胞タイプまたは構造の同定に頼るために採用することができる。

レーザー顕微鏡解剖支援地域転写術のユニークな特徴には、1)細胞および構造の空間的文脈の保全が含まれ、細胞が組織学的ではなく発現によって同定される単一細胞技術を補完する。抗体マーカーは発現シグネチャを定義するため、2)この技術は他のイメージング技術に情報を提供し、知らされる。3)マーカーが疾患で変化した場合でも構造を識別する能力;4)約20,000遺伝子における低発現転写物の検出。5)顕著な組織経済。この技術は、十分なRNA取得に必要なコアの厚さが100μm未満の腎臓生検に対してスケーラブルであり、大規模なリポジトリまたは学術センター6で一般的に利用可能なアーカイブされた凍結組織の使用を可能にする。

その後の研究では、ヒト腎臓組織で使用するための新しい急速蛍光染色プロトコルで最適化された、地域およびバルクトランスクリプトミクス技術を詳細に記述します。このアプローチは、凝集した管間質の表現とは対照的に、インタースティジウムおよびネフロンサブセグメントに対して別々の発現データを提供するため、従来の LMD 探索を改善します。厳格かつ再現性を確保するために実施される品質保証と管理対策が含まれています。このプロトコルは、細胞および関心のある領域の可視化を可能にし、これらの孤立した領域からのRNAの満足のいく獲得をもたらし、下流RNAシーケンシングを可能にする。

Protocol

この研究は、インディアナ大学の機関審査委員会(IRB)によって使用が承認されました。 注:最適な切断温度(OCT)化合物に保存され、-80°Cで保存されている腎臓腎切開組織(XおよびY次元の両方で最大2 cm)でこのプロトコルを使用してください。 RNA汚染を制限する方法ですべての作業を実行し、きれいな使い捨て手袋とフェイスマスクを使用してください。すべての表面の清潔…

Representative Results

サンプル 9つの基準腎切除術(インディアナ大学で得られた3つの標本と腎臓精密医療プロジェクトを通じて得られた6つの標本)からのデータを提示し、腎臓腎球体のセグメントおよび間質領域を分離する急速な蛍光染色法を利用する。このプロセスで利用されたセクションは、死亡した腎臓ドナーまたは影響を受けない腫瘍腎摘出から得られた。これらのサン?…

Discussion

LMDベースのトランスクリプトミクスは、組織内の特定の領域に遺伝子発現を固定する有用な技術である。腎臓におけるこの技術とその潜在的な応用の基礎は、前に説明された8.しかしながら、最適化、近代化、蛍光法解解の合理化は、特に下流RNAシーケンシングのための高精度解離を目的とすることは、あまりユビキタスではない。この方法論は組織内に空間的に接地され?…

開示

The authors have nothing to disclose.

Acknowledgements

一般的な: 著者らは、腎臓精密医療プロジェクト(www.kpmp.org)の研究者の優雅な支援とアドバイスに感謝したいと考えています。

資金調達: この作業のサポートは、NIH/NIDDK K08DK107864(M.T.E.)によって提供されました。NIH/NIDDK UG3DK114923 (T.M E., P.C.D.);R01DK099345 (T.A.S.)。この原稿で報告された研究は、国立糖尿病・消化器病研究所と腎臓病研究所(NIDDK)腎臓精密医療プロジェクト(KPMP)(kpMP)(www.kpmp.org)によって、賞番号U2CDK114886の下で支援されました。

データと材料の可用性: データは遺伝子発現オムニバス(GEO #保留中)にアーカイブされます。

Materials

Acetone Sigma-Aldrich 270725-1L
AMPure Beads Beckman Coulter A63880
Bioanalyzer Agilent 2100
BSA VWR 0332-100G
DAPI ThermoFisher 62248
Desiccant Cartridge Bel-Art F42046-0000
DNAse Qiagen 79254 RDD buffer is included in the pakage
Laser Microdissection Microscope Leica LMD6500
Megalin/LRP2 Antibody Abcam ab76969 Directly conjugated to Alexa Fluor 568
Microcentrifuge tubes ThermoFisher AB-0350
Microscope camera Leica DFC700T
PBS (RNAse Free) VWR K812-500ML
Phalloidin (Oregon Green 488) ThermoFisher O7466
PicoPure RNA Isolation Kit Applied Biosystems KIT0204
PPS-membrane slides Leica 11505268
qPCR Human Reference Total RNA 25 µg Takara Clontech 636690
RNA 6000 Eukaryote Total RNA Pico Chip Agilent 5067-1513
RNAse Away ThermoFisher 7000
RNAse Inhibitor ThermoFisher AM2696
Sequencer (HiSeq or NovaSeq) Illumina NA
SMARTer Stranded Total RNAseq Pico Input v2 Takara Clontech 634411
Tamm-Horsfall Protein Antibody R&D Systems AF5144 Directly conjugated to Alexa Fluor 546
Tissue-Tek® O.C.T. Compound Sakura 4583

参考文献

  1. El-Serag, H. B., et al. Gene expression in Barrett’s esophagus: laser capture versus whole tissue. Scandinavian Journal of Gastroenterology. 44 (7), 787-795 (2009).
  2. Kohda, Y., Murakami, H., Moe, O. W., Star, R. A. Analysis of segmental renal gene expression by laser capture microdissection. Kidney International. 57 (1), 321-331 (2000).
  3. Murakami, H., Liotta, L., Star, R. A. IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney International. 58 (3), 1346-1353 (2000).
  4. Woroniecki, R. P., Bottinger, E. P. Laser capture microdissection of kidney tissue. Methods in Molecular Biology. 466, 73-82 (2009).
  5. Noppert, S. J., Eder, S., Rudnicki, M. Laser-capture microdissection of renal tubule cells and linear amplification of RNA for microarray profiling and real-time PCR. Methods in Molecular Biology. 755, 257-266 (2011).
  6. Amini, P., et al. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Molecular Biology. 18 (1), 22 (2017).
  7. . Catalytic FFPE Nucleic Acid Isolation for best NGS Performance Available from: https://celldatasci.com/products/RNAstorm/RNAstorm_Technical_Note.pdf (2016)
  8. Micanovic, R., Khan, S., El-Achkar, T. M. Immunofluorescence laser micro-dissection of specific nephron segments in the mouse kidney allows targeted downstream proteomic analysis. Physiological Reports. 3 (2), (2015).
  9. Lake, B. B., et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nature Communications. 10 (1), 2832 (2019).
  10. Rodriguez-Canales, J., et al. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications. Methods in Molecular Biology. 980, 61-120 (2013).
  11. Hipp, J. D., et al. Computer-Aided Laser Dissection: A Microdissection Workflow Leveraging Image Analysis Tools. Journal of Pathology Informatics. 9, 45 (2018).

Play Video

記事を引用
Barwinska, D., Ferkowicz, M. J., Cheng, Y., Winfree, S., Dunn, K. W., Kelly, K. J., Sutton, T. A., Rovin, B. H., Parikh, S. V., Phillips, C. L., Dagher, P. C., El-Achkar, T. M., Eadon, M. T., Application of Laser Microdissection to Uncover Regional Transcriptomics in Human Kidney Tissue. J. Vis. Exp. (160), e61371, doi:10.3791/61371 (2020).

View Video