Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
 JoVE Environment

Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

1Bioprocesses Department, Laboratory of Environmental Biotechnology, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, 2Laboratory of Molecular Biology, Escuela Superior de Medicina, Instituto Politécnico Nacional


JoVE 52956

 JoVE In-Press

Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS

1School of Earth Sciences and Engineering, Sun Yat-sen University, 2School of Marine Sciences, Sun Yat-sen University, 3Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, 4South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, 5Institut für Geologie, Universität Hamburg, 6Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, 7Guangzhou Marine Geological Survey

Video Coming Soon

JoVE 55970

 Science Education: Essentials of Earth Science

An Overview of bGDGT Biomarker Analysis for Paleoclimatology

JoVE Science Education

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

Throughout this series of videos, natural samples were extracted and purified in search of organic compounds, called biomarkers, that can relate information on climates and environments of the past. One of the samples analyzed was sediment. Sediments accumulate over geologic time in basins, depressions in the Earth into which sediment flows through the action of fluid (water or air), movement, and gravity. Two main types of basins exist, marine (oceans and seas) and lacustrine (lakes). As one might guess, very different types of life live in these settings, driven in large part by the difference in salinity between them. Over the last few decades, organic geochemists discovered a toolbox of biomarker proxies, or compounds that can be used to describe climate or environment, some of which work in marine environments and some of which work in lacustrine. We turn our attention here to the lacustrine realm and branched glycerol dialkyl glycerol tetraethers (Figure 1). In this section we focus on analysis of terrestrial paleotemperature using branched glycerol dialkyl glycerol tetrathers (Figure 1; brGDGTs) and the MBT/CBT proxy. This proxy was initially described by Weijers et

 JoVE Medicine

Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

1Division of Pulmonary Medicine, University of Alberta, 2Faculty of Physical Education and Recreation, University of Alberta, 3Divisions of Critical Care and Cardiology, University of Alberta, 4Faculty of Rehabilitation Medicine, University of Alberta, 5G.F. MacDonald Centre for Lung Health


JoVE 54949

 JoVE Cancer Research

Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging

1Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, 2Department of Chemistry, Technische Universität München, 3GE Global Research, 4Zentralinstitut für Medizintechnik der Technischen Universität München (IMETUM), Technische Universität München, 5Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, 6IDG Institute of Developmental Genetics, Helmholtz Zentrum München


JoVE 54751

 JoVE Immunology and Infection

In Vivo Investigation of Antimicrobial Blue Light Therapy for Multidrug-resistant Acinetobacter baumannii Burn Infections Using Bioluminescence Imaging

1Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 2Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences, 3Cancer Center, Aviation General Hospital, Beijing, 4Infectious Disease Service, Brooke Army Medical Center


JoVE 54997

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

Determining the Contribution of the Energy Systems During Exercise

1Laboratory of Applied Nutrition, School of Physical Education and Sport, University of Sao Paulo, 2Aerobic Performance Research Group, School of Physical Education and Sport, University of Sao Paulo, 3Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of Sao Paulo, 4Martial Arts and Combat Sports Research Group, School of Physical Education and Sport, University of Sao Paulo


JoVE 3413

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device

1Department of Biomedical Engineering, The University of Texas at Austin, 2Wyss Institute for Biologically Inspired Engineering at Harvard University, 3Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 4John A. Paulson School of Engineering and Applied Sciences, Harvard University


JoVE 54344

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Immunology and Infection

Rapid Identification of Gram Negative Bacteria from Blood Culture Broth Using MALDI-TOF Mass Spectrometry

1Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 2Centre for Research Excellence in Critical Infection, Westmead Millennium Institute, Westmead Hospital, 3Sydney Emerging Infectious Diseases Institute, University of Sydney, Westmead Hospital


JoVE 51663

Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Microbiology

Determination of Moisture Content in Soil

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Soils normally contain a finite amount of water, which can be expressed as the “soil moisture content.” This moisture exists within the pore spaces in between soil aggregates (inter-aggregate pore space) and within soil aggregates (intra-aggregate pore space) (Figure 1). Normally this pore space is occupied by air and/or water. If all the pores are occupied by air, the soil is completely dry. If all the pores are filled with water, the soil is said to be saturated. Figure 1. Pore space in soil.

12345678951
More Results...
Waiting
simple hit counter