Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Aortic Valve: The valve between the left ventricle and the ascending aorta which prevents backflow into the left ventricle.

Isolation and Characterization of Primary Rat Valve Interstitial Cells: A New Model to Study Aortic Valve Calcification

1Developmental Biology, The Roslin Institute and R(D)SVS, University of Edinburgh, 2Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, 3Clinical Sciences and R(D)SVS, University of Edinburgh

JoVE 56126


 Developmental Biology

Optimized Protocol for the Extraction of Proteins from the Human Mitral Valve

1Centro Cardiologico Monzino IRCCS, 2Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, 3Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 4Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS

JoVE 55762


 Biochemistry

Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation

1Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, 3Cardiovascular Division, Brigham and Women's Hospital, 4Harvard Medical School, 5Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University, 6Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital

JoVE 54017


 Medicine

Protocol for Relative Hydrodynamic Assessment of Tri-leaflet Polymer Valves

1Tissue Engineered Mechanics, Imaging and Materials Laboratory, Department of Biomedical Engineering, Florida International University, 2Department of Mechanical and Aerospace Engineering, University of Florida, 3College of Medicine, University of Florida, 4King Faisal Specialty Hospital and Research Center, Jeddah, Saudi Arabia

JoVE 50335


 Bioengineering

Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound

1Department of Biomedical Engineering, Johns Hopkins University, 2Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 3Department of Medicine (Cardiology), Johns Hopkins University, 4The Australian School of Advanced Medicine, Macquarie University

JoVE 52200


 Medicine

Culturing Mouse Cardiac Valves in the Miniature Tissue Culture System

1Department of Molecular Cell Biology, Leiden University Medical Center, 2Department of Engineering Technology, New Jersey Institute of Technology, 3Department of Urology, Leiden University Medical Center, 4Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School

JoVE 52750


 Bioengineering

Cardiac Exam III: Abnormal Heart Sounds

JoVE 10135

Source: Suneel Dhand, MD, Attending Physician, Internal Medicine, Beth Israel Deaconess Medical Center

Having a fundamental understanding of normal heart sounds is the first step toward distinguishing the normal from the abnormal. Murmurs are sounds that represent turbulent and abnormal blood flow across a heart valve. They are caused either by stenosis (valve area too narrow) or regurgitation (backflow of blood across the valve) and are commonly heard as a "swishing" sound during auscultation. Murmurs are graded from 1 to 6 in intensity (1 being the softest and 6 the loudest) (Figure 1). The most common cardiac murmurs heard are left-sided murmurs of the aortic and mitral valves. Right-sided murmurs of the pulmonary and tricuspid valves are less common. Murmurs are typically heard loudest at the anatomical area that corresponds with the valvular pathology. Frequently, they also radiate to other areas. Figure 1. The Levine scale used to grade murmur intensity. In addition to the two main heart sounds, S1 and S2, which are normally produced by the closing of heart valves, there are two other abnormal heart sounds, known as S3 and S4. These are also known as


 Physical Examinations I

A Novel Stretching Platform for Applications in Cell and Tissue Mechanobiology

1Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, 2University of Ottawa Heart Institue, University of Ottawa, 3Libin Cardiovascular Institute of Alberta, University of Calgary, 4Department of Biology, University of Ottawa, 5Institute for Science, Society and Policy, University of Ottawa

JoVE 51454


 Bioengineering

Cardiac Exam II: Auscultation

JoVE 10124

Source: Suneel Dhand, MD, Attending Physician, Internal Medicine, Beth Israel Deaconess Medical Center

Proficiency in the use of a stethoscope to listen to heart sounds and the ability to differentiate between normal and abnormal heart sounds are essential skills for any physician. Correct placement of the stethoscope on the chest corresponds to the sound of cardiac valves closing. The heart has two main sounds: S1 and S2. The first heart sound (S1) occurs as the mitral and tricuspid valves (atrioventricular valves) close after blood enters the ventricles. This represents the start of systole. The second heart sound (S2) occurs when the aortic and pulmonary valves (semilunar valves) close after blood has left the ventricles to enter the systemic and pulmonary circulation systems at the end of systole. Traditionally, the sounds are known as a "lub-dub." Auscultation of the heart is performed using both diaphragm and bell parts of the stethoscope chest piece. The diaphragm is most commonly used and is best for high-frequency sounds (such as S1 and S2) and murmurs of mitral regurgitation and aortic stenosis. The diaphragm should be pressed firmly against the chest wall. The bell best transmits low-frequency sounds (such as S3 and S4) and the murmur of mitral stenosis. The bell should be applied


 Physical Examinations I

Benefits of Cardiac Resynchronization Therapy in an Asynchronous Heart Failure Model Induced by Left Bundle Branch Ablation and Rapid Pacing

1Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 2Department of Echocardiography, Shanghai Institute of Medical imaging, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 3Department of Cardiac surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University

Video Coming Soon

JoVE 56439


 JoVE In-Press

Creation of a Rodent Model of Abdominal Aortic Aneurysm by Blocking Adventitial Vasa Vasorum Perfusion

1Department of Medical Physiology, Hamamatsu University School of Medicine, 2Division of Vascular Surgery, Second Department of Surgery, Hamamatsu University School of Medicine, 3Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 4Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine

JoVE 55763


 Medicine

Inducing Myointimal Hyperplasia Versus Atherosclerosis in Mice: An Introduction of Two Valid Models

1Transplant and Stem Cell Immunobiology Lab, Cardiovascular Research Center, University Hospital Hamburg, 2Cardiovascular Research Center (CVRC) and DZHK University Hamburg, 3Department of Cardiovascular Surgery, University Heart Center Hamburg, 4Center for Interventional Vascular Therapy, Division of Cardiology, Columbia University, 5Cardiovascular Research Foundation, New York, 6Karolinska Institute, Stockholm, 7Department of Cardiothoracic Surgery, Stanford University School of Medicine, Falk Cardiovascular Research Center

JoVE 51459


 Medicine

High-frequency High-resolution Echocardiography: First Evidence on Non-invasive Repeated Measure of Myocardial Strain, Contractility, and Mitral Regurgitation in the Ischemia-reperfused Murine Heart

1Department of Surgery, The Ohio State University, 2Heart and Lung Research Institute, The Ohio State University, 3Department of Cardiovascular Medicine, The Ohio State University

JoVE 1781


 Medicine

Non-contact, Label-free Monitoring of Cells and Extracellular Matrix using Raman Spectroscopy

1Department of Thoracic and Cardiovascular Surgery and Inter-University Centre for Medical Technology Stuttgart-Tübingen (IZST), Eberhard Karls University, Tübingen, 2Department of Cell and Tissue Engineering, Fraunhofer Institute of Interfacial Engineering and Biotechnology (IGB) Stuttgart, Germany, 3Department for Medical Interfacial Engineering (IGVT), University of Stuttgart, Germany, 4Institute of Tissue Engineering and Regenerative Medicine, Julius-Maximillians University, Würzburg, Germany

JoVE 3977


 Bioengineering

Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension

1Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 2Research and Development Facility, University Medical Center Groningen, University of Groningen

JoVE 55065


 Medicine

Scanning Electron Microscopy of Macerated Tissue to Visualize the Extracellular Matrix

1Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 2Department of Medicine, Vanderbilt University Medical Center, 3Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 4Cardiovascular Institute, Maine Medical Center

JoVE 54005


 Biology

12345678916
More Results...