Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Auditory Cortex: Area of the temporal lobe concerned with hearing.

Decoding Auditory Imagery with Multivoxel Pattern Analysis

JoVE 10267

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California


Imagine the sound of a bell ringing. What is happening in the brain when we conjure up a sound like this in the "mind's ear?" There is growing evidence that the brain uses the same mechanisms for imagination that it uses for perception.1 For …

 Neuropsychology

High Resolution Quantitative Synaptic Proteome Profiling of Mouse Brain Regions After Auditory Discrimination Learning

1Leibniz Institute for Neurobiology (LIN), 2Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg, 3Institute of Pharmacology and Toxicology, Medical School, Otto von Guericke University

JoVE 54992

 Neuroscience

Hearing

JoVE 10853

When we hear a sound, our nervous system is detecting sound waves—pressure waves of mechanical energy traveling through a medium. The frequency of the wave is perceived as pitch, while the amplitude is perceived as loudness.

Sound waves are collected by the external ear and amplified as they travel through the ear canal. When sounds reach the junction between the outer and middle ear, they vibrate the tympanic membrane—the eardrum. The resulting mechanical energy causes the attached ossicles—a set of small bones in the middle ear—to move. The ossicles vibrate the oval window, the outermost part of the inner ear. In the labyrinth of the inner ear, the sound wave energy is transferred to the cochlea—a coiled structure in the inner ear—causing the fluid within it to move. The cochlea contains receptors that transduce mechanical sound waves into electrical signals that can be interpreted by the brain. Sounds within the hearing range vibrate the basilar membrane in the cochlea and are detected by hair cells on the organ of Corti, the site of transduction. Along the primary auditory pathway, the signals are sent through the auditory nerve to the cochlear nuclei in the brainstem. From here, they travel to the inferior colliculus of the midbrain and up to the thalamus, and then to the primary auditory cortex. Along this pat

 Core: Sensory Systems

The Cochlea

JoVE 10855

The cochlea is a coiled structure in the inner ear that contains hair cells—the sensory receptors of the auditory system. Sound waves are transmitted to the cochlea by small bones attached to the eardrum called the ossicles, which vibrate the oval window that leads to the inner ear. This causes fluid in the chambers of the cochlea to move, vibrating the basilar membrane.

The basilar membrane extends from the basal end of the cochlea near the oval window to the apical end at its tip. Although the cochlea itself narrows towards the apical end, the basilar membrane has the opposite geometry—becoming wider and more flexible towards the apical end. Primarily because of these physical characteristics, the apical end of the basilar membrane maximally vibrates when exposed to low-frequency sounds, while the narrower, stiffer basal end maximally vibrates when exposed to high frequencies. This gradient of frequency response creates tonotopy—a topographic map of pitch—in the cochlea. The hair cells are stimulated by the shearing force created by the vibration of the basilar membrane below them, relative to the stiffer tectorial membrane above them. Because of the tonotopy of the basilar membrane, hair cells are maximally stimulated by different frequencies depending on where they are in the cochlea. Those at the basal end respond be

 Core: Sensory Systems

What is a Sensory System?

JoVE 10849

Sensory systems detect stimuli—such as light and sound waves—and transduce them into neural signals that can be interpreted by the nervous system. In addition to external stimuli detected by the senses, some sensory systems detect internal stimuli—such as the proprioceptors in muscles and tendons that send feedback about limb position.

Sensory systems include the visual, auditory, gustatory (taste), olfactory (smell), somatosensory (touch, pain, temperature, and proprioception), and vestibular (balance, spatial orientation) systems. All sensory systems have receptor cells that are specialized to detect a particular type of stimulus. For example, hair cells in the inner ear have cilia that move in the presence of sound waves, while olfactory receptor neurons in the nasal cavity have receptors that bind to odorant molecules. The presence of an appropriate stimulus triggers electrochemical changes in the nervous system. This stimulus typically changes the membrane potential of a sensory neuron, triggering an action potential. The information is then transmitted from the sensory organ to the spinal cord and then the brain, or directly to the brain (as in the visual system). The different types of sensory information—also called modalities—travel in different pathways through the central nervous system, but most

 Core: Sensory Systems

The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism

1Department of Psychology, University of Montréal, 2Montreal Neurological Institute, McGill University, 3Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota

JoVE 51631

 Neuroscience

Fear Conditioning

JoVE 5417

Fear Conditioning is a type of learning in which an association is established between a negative unpleasant event and a harmless stimulus. This leads to a fear of the harmless stimulus. This process is largely mediated by the amygdala, which is a brain region involved in emotions and stress reactions. Fear conditioning can be utilized in several ways to understand different aspects of…

 Behavioral Science

Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice

1Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 2Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 3Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences

JoVE 50871

 Behavior

Extracellular Recording of Neuronal Activity Combined with Microiontophoretic Application of Neuroactive Substances in Awake Mice

1Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, 2Neural Systems Laboratory, Institute for Systems Research, University of Maryland, 3Medical Research Council Institute of Hearing Research, 4Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca

JoVE 53914

 Neuroscience

A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain

1Division of Neurotoxicology, National Center for Toxicological Research, 2Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, 3Office of Planning, Finance, and Information Technology, National Center for Toxicological Research

JoVE 4285

 Neuroscience

Non-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with 18F-FDG

1W. M. Keck Center for Transgene Research, University of Notre Dame, 2Department of Chemistry and Biochemistry, University of Notre Dame, 3Notre Dame Integrated Imaging Facility, University of Notre Dame, 4Department of Biological Sciences, University of Notre Dame, 5Harper Cancer Research Institute, University of Notre Dame

JoVE 51495

 Medicine

Simple Surgical Induction of Conductive Hearing Loss with Verification Using Otoscope Visualization and Behavioral Clap Startle Response in Rat

1Instituto de Neurobiología, Universidad Nacional Autónoma de México, México, 2State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, 3Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 4Department of Physics, City University of Hong Kong, Hong Kong, 5Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, 6Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong

Video Coming Soon

JoVE 57993

 JoVE In-Press

Simultaneous Recordings of Cortical Local Field Potentials and Electrocorticograms in Response to Nociceptive Laser Stimuli from Freely Moving Rats

1CAS Key Laboratory of Mental Health, Institute of Psychology, 2Department of Psychology, University of Chinese Academy of Sciences, 3Research Center of Brain Cognitive Neuroscience, Liaoning Normal University, 4Neuroscience Research Institute, Peking University, 5Department of Neurobiology, School of Basic Medical Sciences, Peking University, 6Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, 7Department of Pain Management, State Key Clinical Specialty in Pain Medicine, Second Affiliated Hospital of Guangzhou Medical University

JoVE 58686

 Behavior

Chronic Implantation of Whole-cortical Electrocorticographic Array in the Common Marmoset

1Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, 2Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 3Department of Physiology, Keio University School of Medicine, 4Department of Ultrastructural Research, National Center of Neurology and Psychiatry

JoVE 58980

 Neuroscience

Analyzing Neural Activity and Connectivity Using Intracranial EEG Data with SPM Software

1Kokoro Research Center, Kyoto University, 2Brain Activity Imaging Center, Advanced Telecommunications Research Institute International, 3Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 4National Epilepsy Center, 5Shizuoka Institute of Epilepsy and Neurological Disorders, 6Department of System Neuroscience, Sapporo Medical University, 7Faculty of Human Health Science, Graduate School of Medicine, Kyoto University

JoVE 58187

 Neuroscience

Auditory Brainstem Response and Outer Hair Cell Whole-cell Patch Clamp Recording in Postnatal Rats

1Department of Physiology, School of Basic Medical Sciences, Southern Medical University, 2School of Basic Medical Sciences, Guizhou Medical University, 3Department of Laboratory Medicines, Guangzhou General Hospital of Guangzhou Military Region, Southern Medical University, 4Experiment Teaching Center, School of Basic Medical Sciences, Southern Medical University

JoVE 56678

 Neuroscience

A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus)

1Division of Regenerative Medicine, Jikei University School of Medicine, 2Department of Otorhinolaryngology, Jikei University School of Medicine, 3Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 4Laboratory Animal Facilities, Jikei University School of Medicine

JoVE 56574

 Medicine

A Wireless, Bidirectional Interface for In Vivo Recording and Stimulation of Neural Activity in Freely Behaving Rats

1Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-Universität Marburg, 2Behavioral Neurosciences Institute (INeC), 3Thomas RECORDING GmbH, 4Department of Neurophysics, Philipps-Universität Marburg

JoVE 56299

 Behavior

A Protocol for the Administration of Real-Time fMRI Neurofeedback Training

1Office of the Vice President for Research and Graduate Studies, Wright State University, 2Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, 3Pediatric Radiology and Medical Imaging, Dayton Children's Hospital, 4Department of Trauma Care and Surgery, Boonshoft School of Medicine, Wright State University, 5Department of Defense Hearing Center of Excellence, JBSA-Lackland, 6Department of Neurology, Boonshoft School of Medicine, Wright State University

JoVE 55543

 Neuroscience

Neuro-rehabilitation Approach for Sudden Sensorineural Hearing Loss

1Department of Integrative Physiology, National Institute for Physiological Sciences, 2Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, 3Department of Otorhinolaryngology, Kansai Rosai Hospital, 4Institute for Biomagnetism and Biosignalanalysis, University of Muenster, 5Institute for Epidemiology and Social Medicine, University of Muenster, 6Sokendai Graduate University for Advanced Studies

JoVE 53264

 Behavior

Slow-release Drug Delivery through Elvax 40W to the Rat Retina: Implications for the Treatment of Chronic Conditions

1Biotechnology and Applied Clinical Sciences Department, University of L'Aquila, 2ARC Centre of Excellence in Vision Science, 3John Curtin School of Medical Research, Australian National University, 4ANU Medical School, Australian National University

JoVE 51563

 Medicine
12
More Results...