Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Blood-Brain Barrier: Specialized non-fenestrated tightly-joined Endothelial cells with Tight junctions that form a transport barrier for certain substances between the cerebral capillaries and the Brain tissue.

The Blood-brain Barrier

JoVE 10841

The blood-brain barrier (BBB) refers to the specialized vasculature that provides the brain with nutrients in the blood while strictly regulating the movement of ions, molecules, pathogens, and other substances. It is composed of tightly linked endothelial cells on one side and astrocyte projections on the other. Together they provide a semipermeable barrier that protects the brain and poses unique challenges to the delivery of therapeutics. The BBB is made up of a variety of cellular components, including endothelial cells and astrocytes. These cells share a common basement membrane and together regulate the passage of components between the circulation and the interstitial fluid surrounding the brain. The first type of cellular component, specialized endothelial cells, make up the walls of the cerebral capillaries. They are connected by extremely tight and complex intercellular junctions. These junctions create a selective physical barrier, preventing simple diffusion of most substances, including average to large-sized molecules such as glucose and insulin. A second cell type, astrocytes, are a type of glial cell of the central nervous system which influences endothelial cell function, blood flow, and ion balance in the brain through interaction and close association with cerebral vasculature. They provide a direct link between the vasculature

 Core: Nervous System

Improved Method for the Establishment of an In Vitro Blood-Brain Barrier Model Based on Porcine Brain Endothelial Cells

1Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 2Institute of Pharmaceutical Science, King's College London, 3HICoE Centre for Drug Research, Universiti Sains Malaysia

JoVE 56277

 Medicine

A Human Blood-Brain Interface Model to Study Barrier Crossings by Pathogens or Medicines and Their Interactions with the Brain

1Institut Pasteur, CNRS UMR 3569, Unité de Neuroimmunologie Virale, 2Institut Pasteur, Unité d’Epidémiologie et de Pathophysiologie des Virus Oncogènes, Université Sorbonne Paris Cité/Paris Diderot, 3Institut Pasteur, PFIA, DTPS

JoVE 59220

 Neuroscience

Glial Cells

JoVE 10843

Glial cells are one of the two main types of cells in the nervous system. Glia cells comprise astrocytes, oligodendrocytes, microglia, and ependymal cells in the central nervous system, and satellite and Schwann cells in the peripheral nervous system. These cells do not communicate via electrical signals like neurons do, but they contribute to virtually every other aspect of nervous system function. In humans, the number of glial cells is roughly equal to the number of neurons in the brain. Glia in the central nervous system (CNS) include astrocytes, oligodendrocytes, microglia, and ependymal cells. Astrocytes are the most abundant type of glial cell and are found in organized, non-overlapping patterns throughout the brain, where they closely associate with neurons and capillaries. Astrocytes play numerous roles in brain function, including regulating blood flow and metabolic processes, synaptic ion and pH homeostasis, and blood-brain barrier maintenance. Another specialized glial cell, the oligodendrocyte, forms the myelin sheath that surrounds neuronal axons in the CNS. Oligodendrocytes extend long cellular processes that wrap around axons multiple times to form this coating. Myelin sheath is required for proper conduction of neuronal signaling and greatly increases the speed at which these messages travel. Microglia—known as the macrop

 Core: Nervous System

Compound Administration III

JoVE 10215

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN


There are many commonly used routes for compound administration in laboratory mice and rats. However, certain protocols may require the use of less commonly used routes, including intradermal, intranasal, and intracranial injections.…

 Lab Animal Research

A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies

1Department of Cancer Biology, Dana-Farber Cancer Institute, 2Department of Pediatrics, Children's Hospital, 3Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, 4Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, 5Department of Neurosurgery, Children's Hospital, 6Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute

JoVE 53304

 Medicine

A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain

1Division of Neurotoxicology, National Center for Toxicological Research, 2Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, 3Office of Planning, Finance, and Information Technology, National Center for Toxicological Research

JoVE 4285

 Neuroscience

Monitoring Astrocyte Reactivity and Proliferation in Vitro Under Ischemic-Like Conditions

1Department of Neuroscience, School of Medicine, Universidad Central del Caribe, 2Department of Biochemistry, School of Medicine, Universidad Central del Caribe, 3Department of Pharmacology and Toxicology, Medical Sciences, Campus, University of Puerto Rico

JoVE 55108

 Neuroscience

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609

 Neuroscience

Evaluation of Zika Virus-specific T-cell Responses in Immunoprivileged Organs of Infected Ifnar1-/- Mice

1School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 2NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 3State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 4Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 5Laboratory Animal Center, Chinese Center for Disease Control and Prevention, 6CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences

JoVE 58110

 Immunology and Infection

Assessing Tumor Microenvironment of Metastasis Doorway-Mediated Vascular Permeability Associated with Cancer Cell Dissemination using Intravital Imaging and Fixed Tissue Analysis

1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 2Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 3Integrated Imaging Program, Albert Einstein College of Medicine, 4Department of Surgery, Montefiore Medical Center, 5Department of Pathology, Montefiore Medical Center

JoVE 59633

 Cancer Research

Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos

1Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier, 2Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, FRE 3689, Université Montpellier, 3Unité de Formation et de Recherche des Sciences de la Santé, EA3647-EPIM, Université Versailles St Quentin

JoVE 53130

 Immunology and Infection

Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination

1Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 2Department of Pathology, University of Alabama at Birmingham, 3Department of Neurobiology, University of Alabama at Birmingham, 4Center for Glial Biology and Medicine, University of Alabama at Birmingham

JoVE 54348

 Immunology and Infection

Combined Near-infrared Fluorescent Imaging and Micro-computed Tomography for Directly Visualizing Cerebral Thromboemboli

1Molecular Imaging and Neurovascular Research Laboratory, Dongguk University College of Medicine, 2Biomedical Research Center, Korea Institute of Science and Technology, 3Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, 4Departments of Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center

JoVE 54294

 Medicine

Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration

1Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 2Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 3School of Biomedical Engineering, Drexel University, 4Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 5Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania

JoVE 55848

 Bioengineering

A Multi-well Format Polyacrylamide-based Assay for Studying the Effect of Extracellular Matrix Stiffness on the Bacterial Infection of Adherent Cells

1Department of Biochemistry, Stanford University School of Medicine, 2Department of Mechanical and Aerospace Engineering, University of California San Diego, 3Departments of Biochemistry, Microbiology and Immunology and Howard Hughes Medical Institute, Stanford University School of Medicine

JoVE 57361

 Immunology and Infection

Technical Aspect of the Automated Synthesis and Real-Time Kinetic Evaluation of [11C]SNAP-7941

1Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 2Department for Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, 3Ludwig Boltzmann Institute Applied Diagnostics, 4CBmed GmbH - Center for Biomarker Research in Medicine

JoVE 59557

 Chemistry
12345
More Results...