Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Cardiac Output: The volume of Blood passing through the Heart per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with Stroke volume (volume per beat).

Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology

1Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, 2Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, 3Department of Biomedical Engineering, University of Melbourne, 4Department of Engineering Science, University of Auckland, 5Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 6School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 7School of Mathematics and Statistics, Faculty of Science, University of Melbourne, 8ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, 9Living Systems Institute, University of Exeter

Video Coming Soon

JoVE 56817


 JoVE In-Press

Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction

1Department of Experimental Cardiology, University Medical Center Utrecht, 2Department of Cardiology, University Medical Center Utrecht, 3Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, 4Interuniversity Cardiology Institutes of the Netherlands (ICIN)

JoVE 54021


 Medicine

Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

1Division of Pulmonary Medicine, University of Alberta, 2Faculty of Physical Education and Recreation, University of Alberta, 3Divisions of Critical Care and Cardiology, University of Alberta, 4Faculty of Rehabilitation Medicine, University of Alberta, 5G.F. MacDonald Centre for Lung Health

JoVE 54949


 Medicine

Local Field Fluorescence Microscopy: Imaging Cellular Signals in Intact Hearts

1School of Natural Sciences, University of California, Merced, 2Centro de Investigaciones Cardiovasculares, Universidad de la Plata and Conicet, 3Facultad de Ingenieria, Universidad Nacional de Entre Rios, 4Department of Physiology, Midwestern University, 5School of Engineering, University of California, Merced

JoVE 55202


 Biology

High-throughput Parallel Sequencing to Measure Fitness of Leptospira interrogans Transposon Insertion Mutants During Golden Syrian Hamster Infection

1Veterans Affairs Greater Los Angeles Healthcare System, 2Departments of Medicine, David Geffen School of Medicine at University of California Los Angeles, 3Departments of Urology, David Geffen School of Medicine at University of California Los Angeles, 4Departments of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles

Video Coming Soon

JoVE 56442


 JoVE In-Press

Optimized Protocol for the Extraction of Proteins from the Human Mitral Valve

1Centro Cardiologico Monzino IRCCS, 2Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, 3Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 4Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS

JoVE 55762


 Biochemistry

Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle

1Davis Heart and Lung Research Institute, The Ohio State University, 2Laboratory of Clinical Investigation, National Institute on Aging, 3Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, 4Department of Human Sciences, Human Nutrition, The Ohio State University, 5Division of Endocrinology and Diabetes, Department of Pediatrics, University of Pennsylvania

JoVE 54977


 Medicine

Chronic Thromboembolic Pulmonary Hypertension and Assessment of Right Ventricular Function in the Piglet

1Surgical Research Lab, Marie Lannelongue Hospital, 2Department of Pathology, Marie Lannelongue Hospital, 3Department of Thoracic and Vascular Surgery, Marie Lannelongue Hospital, 4Thoracic and Cardiovascular Surgery, University Hospital of Rennes, 5INSERM U999 Paris-Sud University

JoVE 53133


 Medicine

Increasing Pulmonary Artery Pulsatile Flow Improves Hypoxic Pulmonary Hypertension in Piglets

1Department of Medicine, Pulmonary Hypertension Research Group (CRIUCPQ), Laval University, 2Institut National de la Recherche Agronomique, 3Université Diderot Paris, Sorbonne Paris Cité, 4Hôpital Lariboisière, Physiologie clinique Explorations Fonctionnelles, 5INSERM U 965, 6Service de Cardiologie, Centre Hospitalier Universitaire Tours

JoVE 52571


 Medicine

Basic Life Support: Cardiopulmonary Resuscitation and Defibrillation

JoVE 10199

Source: Julianna Jung, MD, FACEP, Associate Professor of Emergency Medicine, The Johns Hopkins University School of Medicine, Maryland, USA

High-quality cardiopulmonary resuscitation (CPR) is the single most important determinant of intact survival in cardiac arrest, and it is critical that all healthcare workers are able to perform this lifesaving technique effectively. Despite the conceptual simplicity of CPR, the reality is that many providers perform it incorrectly, resulting in suboptimal survival outcomes for their patients. This video looks at the essential elements of high-quality CPR, discusses the physiologic basis for each step, and describes how to optimize them in order to enhance survival outcomes. Appropriate prioritization of interventions in cardiac arrest and methods for optimizing resuscitation performance are covered as well.


 Emergency Medicine and Critical Care

Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction

1Division Woman and Child, Department Women, University Hospitals Leuven, 2The Ritchie Centre, Monash Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia, 3Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 4Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 5Maternal-Fetal Medicine Department, ICGON, Hospital Clínic, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)

JoVE 50392


 Medicine

Near-infrared Navigation System for Real-time Visualization of Blood Flow in Vascular Grafts

1Department of Radiology, University of Missouri, 2Office of Animal Resources, University of Missouri, 3Bioengineering, University of Missouri, 4Biomedical Science, University of Missouri, 5Surgery - Division of Cardiothoracic Surgery, University of Missouri, 6MU-iCATS, University of Missouri, 7Medical Pharmacology and Physiology, University of Missouri

Video Coming Soon

JoVE 54927


 JoVE In-Press

Pericardiocentesis

JoVE 10236

Source: Rachel Liu, BAO, MBBCh, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

The heart lies within the pericardium, a relatively inelastic fibrous sac. The pericardium has some compliance to stretch when fluid is slowly introduced into the pericardial space. However, rapid accumulation overwhelms pericardial ability to accommodate extra fluid. Once a critical volume is reached, intrapericardial pressure increases dramatically, compressing the right ventricle and eventually impeding the volume that enters the left ventricle. When these chambers cannot fill in diastole, stroke volume and cardiac output are diminished, leading to cardiac tamponade, a life-threatening compression of the cardiac chambers by a pericardial effusion. Unless the pressure is relieved by aspiration of pericardial fluid (pericardiocentesis), cardiac arrest is imminent. Cardiac tamponadeis a critical emergency that can carry high morbidity and mortality. Patients may present in extremis, without much time to make the diagnosis and perform life-saving treatments. Causes of this condition are broken into traumatic and non-traumatic categories, with different treatment algorithms. Stab and gunshot wounds are the primary cause of traumatic tamponade, but it may occur from blunt trauma associated with


 Emergency Medicine and Critical Care

Method of Isolated Ex Vivo Lung Perfusion in a Rat Model: Lessons Learned from Developing a Rat EVLP Program

1Department of Biomedical Engineering, Ohio State University Wexner Medical Center, 2Davis Heart & Lung Research Institute, Ohio State University Wexner Medical Center, 3The Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Laboratory, Ohio State University Wexner Medical Center, 4Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, 5Departments of Pediatrics and Internal Medicine, Ohio State University, 6Advanced Lung Disease Program, Lung and Heart-Lung Transplant Programs, Nationwide Children's Hospital, 7Division of Transplantation, Department of Surgery, Ohio State University Wexner Medical Center

JoVE 52309


 Medicine

Harmonic Nanoparticles for Regenerative Research

1Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 2Physics Department, GAP-Biophotonics, University of Geneva, 3Laboratoire d'Optique Biomédicale (LOB), Faculté des Sciences et Techniques de l'Ingénieur, École Polytechnique Fédérale de Lausanne, 4Department of Clinical Medicine, School of Medicine, Trinity College Dublin, 5School of Medicine and CRANN, Trinity College Dublin, 6Nikon AG Instruments

JoVE 51333


 Bioengineering

Quantification of Global Diastolic Function by Kinematic Modeling-based Analysis of Transmitral Flow via the Parametrized Diastolic Filling Formalism

1Department of Biomedical Engineering, Washington University in St. Louis, 2Department of Physics, Washington University in St. Louis, 3Division of Biology and Biomedical Sciences, Washington University in St. Louis, 4Department of Medicine, Cardiovascular Division, Washington University in St. Louis, 5Cardiovascular Biophysics Lab, Washington University in St. Louis

JoVE 51471


 Bioengineering

12345678939
More Results...