Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Cartilage, Articular:

Chondrogenic Pellet Formation from Cord Blood-derived Induced Pluripotent Stem Cells

1CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 2Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea

JoVE 55988


 Developmental Biology

Treatment of Osteochondral Defects in the Rabbit's Knee Joint by Implantation of Allogeneic Mesenchymal Stem Cells in Fibrin Clots

1Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar der Technischen Universität München, 2Department of Radiology, Klinikum rechts der Isar der Technischen Universität München, 3Institute of Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, 4Department of Radiology, Uniklinik Köln

JoVE 4423


 Medicine

A Rat Tibial Growth Plate Injury Model to Characterize Repair Mechanisms and Evaluate Growth Plate Regeneration Strategies

1Department of Bioengineering, Department of Orthopedics, University of Colorado Anschutz Medical Campus, 2Department of Orthopedics, University of Colorado Anschutz Medical Campus, 3Department of Chemical & Biological Engineering, Colorado School of Mines, 4Department of Orthopedics, Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus

JoVE 55571


 Medicine

Matrix-assisted Autologous Chondrocyte Transplantation for Remodeling and Repair of Chondral Defects in a Rabbit Model

1Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar der Technischen Universität München, 2Department of Radiology, Klinikum rechts der Isar der Technischen Universität München, 3Institute of Experimental Oncology and Therapy Research, Klinikum rechts der Isar der Technischen Universität München, 4Department of Radiology, Uniklinik Köln

JoVE 4422


 Medicine

In Vivo Evaluation of Fracture Callus Development During Bone Healing in Mice Using an MRI-compatible Osteosynthesis Device for the Mouse Femur

1Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 2RISystem, 3Core Facility Small Animal MRI, University Medical Center Ulm, 4Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Medical Center Ulm

Video Coming Soon

JoVE 56679


 JoVE In-Press

A 5-mC Dot Blot Assay Quantifying the DNA Methylation Level of Chondrocyte Dedifferentiation In Vitro

1Guangzhou Medical University, 2Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopeadic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3Department of Chemistry, The Chinese University of Hong Kong, 4School of Biomedical Engineering, Shanghai Jiao Tong University, 5Renji Hospital Clinical Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine, 6Shantou University Medical College

JoVE 55565


 Developmental Biology

Human Cartilage Tissue Fabrication Using Three-dimensional Inkjet Printing Technology

1Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 2Stemorgan Inc., 3Institute of Advanced Study, Technical University of Munich, 4Institute of Virology, School of Medicine, Wuhan University, 5Department of Molecular and Experimental Medicine, The Scripps Research Institute, 6Research Institute for Biomedical Sciences, Tokyo University of Science

JoVE 51294


 Bioengineering

Results below contain some, but not all of your search terms.

Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering

1Department of Chemical Engineering, Rowan University, 2Department of Biological Sciences, Rowan University, 3Department of Biomedical Engineering, Drexel University

JoVE 53704


 Bioengineering

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Intra-articular Shoulder Injection for Reduction Following Shoulder Dislocation

JoVE 10282

Source: Rachel Liu, BAO, MBBCh, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

The anterior shoulder dislocation is one of the most common joint dislocations seen in emergency settings. In anterior shoulder dislocation, the humeral head is displaced out of the glenohumeral joint in front of the scapular glenoid, resulting in a loss of the articulation between the arm and the rest of the shoulder. This can be caused by a fall onto an abducted, extended, and externally rotated arm, such as in a bicycle or running accident. Sometimes anterior shoulder dislocation can be due to a minor trauma or even result from rolling over in bed with an externally rotated and stretched overhead arm. Anterior shoulder dislocation is a painful injury. Patients cannot actively abduct, adduct or internally rotate the shoulder. Reduction of the shoulder is the best form of analgesia and, of course, is necessary to restore arm function. While it is current practice for patients to undergo procedural sedation during the shoulder reduction procedure, the sedatives have serious side effects (cardiac and respiratory depression), and require long stays in the emergency department (ED), dedicated nursing staff, multiple radiographs, and consulting services. Intra-art


 Emergency Medicine and Critical Care

Results below contain some, but not all of your search terms.
12345
More Results...