Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Cell Aggregation: The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type.

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609


Production and Administration of Therapeutic Mesenchymal Stem/Stromal Cell (MSC) Spheroids Primed in 3-D Cultures Under Xeno-free Conditions

1Department of Biology, University of Mary Hardin-Baylor, 2Department of Pediatrics, University of Texas Medical Branch, 3Multi-Organ Support Technology Task Area, U.S. Army Institute of Surgical Research, 4Internal Medicine, Texas A&M University Health Science Center

JoVE 55126

 Developmental Biology

High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry

1Department of Biochemistry, Medical College of Wisconsin, 2Stanford Cardiovascular Institute, Stanford University School of Medicine, 3Department of Anesthesiology, Medical College of Wisconsin, 4Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, 5Division of Cardiology, Johns Hopkins University School of Medicine, 6Cardiovascular Research Center, Biotechnology and Bioengineering Center, Medical College of Wisconsin

JoVE 52010


Intra-iliac Artery Injection for Efficient and Selective Modeling of Microscopic Bone Metastasis

1Lester and Sue Smith Breast Center, Baylor College of Medicine, 2Department of Molecular and Cellular Biology, Baylor College of Medicine, 3Graduate Program in Developmental Biology, Baylor College of Medicine, 4Department of Molecular and Human Genetics, Baylor College of Medicine, 5McNair Medical Institute, Baylor College of Medicine, 6Dan L. Duncan Cancer Center, Baylor College of Medicine

JoVE 53982

 Cancer Research

Endothelialized Microfluidics for Studying Microvascular Interactions in Hematologic Diseases

1Department of Pediatrics, Emory University School of Medicine, 2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 3Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, 4Winship Cancer Institute of Emory University

JoVE 3958


Time-lapse Imaging of Primary Preneoplastic Mammary Epithelial Cells Derived from Genetically Engineered Mouse Models of Breast Cancer

1Department of Oncology, Georgetown University, 2Lombardi Comprehensive Cancer Center, Georgetown University, 3Stem Cell Dynamics, Helmholtz Zentrum München - German Research Center for Environmental Health, 4Department of Medicine, Georgetown University, 5Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University

JoVE 50198


Viscosity of Propylene Glycol Solutions

JoVE 10439

Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

Viscosity is a measure of a fluid's resistance to flow, and it is a useful parameter in the design of efficient product processing and quality control in a wide range of industries. A variety of viscometers are used to obtain the most accurate readings of experimental materials. The standard method of measuring viscosity is through a glass tube viscometer, which estimates viscosity by measuring the amount of time it takes fluid to flow through a capillary tube made of glass1. Rotational viscometers operate by applying shearing forces and measuring the time it takes a flowing1. These viscometers make use of the flowing force of the fluid, and they can use either a spring system or a digital encoder system1. Different measuring systems exist as well, with the standard being a cone and plate system, where fluid flows under the cone shape and over the plate, in order to minimize shear stress1. Parallel plate systems use two parallel plates and is ideal for measuring across temperature gradients, allowing a smooth transition1. Couette systems use a cup and

 Chemical Engineering

Gene Transfection toward Spheroid Cells on Micropatterned Culture Plates for Genetically-modified Cell Transplantation

1Graduate School of Medicine, Laboratory of Clinical Biotechnology, The University of Tokyo, 2Graduate School of Engineering, Department of Materials Engineering, The University of Tokyo, 3Graduate School of Engineering, Department of Bioengineering, The University of Tokyo

JoVE 52384


Isolation of Myeloid Dendritic Cells and Epithelial Cells from Human Thymus

1Department of General Neurology, Hertie Institute for Clinical Brain Research, 2Institute of Pharmacology, University of Bern, 3Department of Immunology, University Medical Center Hamburg-Eppendorf, 4Department of Thoracic and Cardiovascular Surgery, University Clinic Tuebingen, 5Department of Neurology, University Hospital Erlangen

JoVE 50951

 Immunology and Infection

Radial Mobility and Cytotoxic Function of Retroviral Replicating Vector Transduced, Non-adherent Alloresponsive T Lymphocytes

1Department of Neurosurgery, UCLA David Geffen School of Medicine, 2Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, 3Department of Medicine, UCLA David Geffen School of Medicine, 4Brain Research Institute, UCLA David Geffen School of Medicine, 5Jonsson Comprehensive Cancer Center, UCLA David Geffen School of Medicine

JoVE 52416

 Immunology and Infection

Detection of Intracellular Gene Expression in Live Cells of Murine, Human and Porcine Origin Using Fluorescence-labeled Nanoparticles

1Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, 2Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 3Clinical Cooperation Groups: "Antigen-specific Immunotherapy" and "Immune Monitoring", Helmholtz Center Munich (Neuhererg), Technische Universität München, 4DZHK (German Center for Cardiovascular Research) – Partner site Munich Heart Alliance

JoVE 53268


Analysis of Cell Suspensions Isolated from Solid Tissues by Spectral Flow Cytometry

1Flow Cytometry Core Facility, Center for Translational Research-Technical Core, Institut Pasteur, 2Unit for Lymphopoiesis, Immunology Department, INSERM U1223, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, 3Stem-Cell Microenvironments in Repair/Regeneration Team, Instituto de Investigação e Inovação em Saúde (i3s), INEB - Instituto de Engenharia Biomédica, 4ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 5Stem Cells and Regenerative Medicine Team, UMRS 1166, ICAN - Institute of Cardiometabolism And Nutrition, UPMC - Université Pierre et Marie Curie - Paris 6, INSERM

JoVE 55578


Modeling Ovarian Cancer Multicellular Spheroid Behavior in a Dynamic 3D Peritoneal Microdevice

1School of Biological Sciences, University of Hong Kong, 2Department of Mechanical Engineering, University of Hong Kong, 3Department of Medicine, University of Hong Kong, 4Department of Biomedical Sciences, Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong

JoVE 55337


More Results...