Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
 JoVE In-Press

Light-mediated Reversible Modulation of the Mitogen-activated Protein Kinase Pathway during Cell Differentiation and Xenopus Embryonic Development

1Department of Biochemistry, University of Illinois at Urbana-Champaign, 2Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3Neuroscience Program, University of Illinois at Urbana-Champaign, 4Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign

Video Coming Soon

JoVE 55823

 Science Education: Essentials of Developmental Biology

Embryonic Stem Cell Culture and Differentiation

JoVE Science Education

Culturing embryonic stem (ES) cells requires conditions that maintain these cells in an undifferentiated state to preserve their capacity for self-renewal and pluripotency. Stem cell biologists are continuously optimizing methods to improve the efficiency of ES cell culture, and are simultaneously trying to direct the differentiation of ES cells into specific cell types that could be used in regenerative medicine. This video describes the basic principles of ES cell culture, and demonstrates a general protocol to grow and passage ES cells. We also take a closer look at the hanging drop method, which is used to differentiate ES cells. Finally, this video will describe a few applications of ES cell culture and differentiation techniques, including a method used to generate functional heart muscle cells in vitro.

 JoVE Developmental Biology

Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation

1Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, 2Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 3MTA-DE “Lendulet” Immunogenomics Research Group, University of Debrecen


JoVE 53978

 JoVE Biology

High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry

1Department of Biochemistry, Medical College of Wisconsin, 2Stanford Cardiovascular Institute, Stanford University School of Medicine, 3Department of Anesthesiology, Medical College of Wisconsin, 4Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, 5Division of Cardiology, Johns Hopkins University School of Medicine, 6Cardiovascular Research Center, Biotechnology and Bioengineering Center, Medical College of Wisconsin


JoVE 52010

 JoVE Developmental Biology

Rapid Neuronal Differentiation of Induced Pluripotent Stem Cells for Measuring Network Activity on Micro-electrode Arrays

1Department of Cognitive Neurosciences, Radboudumc, 2Donders Institute for Brain, Cognition and Behaviour, Radboud University, 3Department of Human Genetics, Radboudumc, 4Department of Molecular Developmental Biology, Radboud University


JoVE 54900

 JoVE In-Press

Chondrogenic Pellet Formation from Cord Blood-derived Induced Pluripotent Stem Cells

1CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Division of Rheumatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 2Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea

Video Coming Soon

JoVE 55988

 JoVE Bioengineering

Construction of Defined Human Engineered Cardiac Tissues to Study Mechanisms of Cardiac Cell Therapy

1Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, 2The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 3Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong


JoVE 53447

 JoVE Developmental Biology

Isolation and Characterization of Mesenchymal Stromal Cells from Human Umbilical Cord and Fetal Placenta

1Department of Biological Sciences, Oakland University, 2OU-WB Institute for Stem Cell and Regenerative Medicine, 3Department of Obstetrics and Gynecology, St. John Provindence - Providence Park Hospital, 4Department of Neurosurgery, Beaumont Health System


JoVE 55224

 JoVE Developmental Biology

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund


JoVE 52333

 JoVE Cancer Research

Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma

1Department of Surgery and Translational Medicine (DCMT), University of Florence, 2Neurofarba Department, University of Florence, 3Department of Traumatology and General Orthopedics, Azienda Ospedaliera Universitaria Careggi


JoVE 53884

 JoVE Developmental Biology

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol

1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 3St. Vincent´s Clinical School, Faculty of Medicine, University of New South Wales, 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, 5Department of Developmental Biology, University of Science and Culture, 6Heart Centre for Children, The Children´s Hospital at Westmead, 7Sydney Medical School, University of Sydney, 8Department of Developmental Biology, University of Science and Culture, Tehran, Iran


JoVE 54276

 JoVE Developmental Biology

Derivation of Highly Purified Cardiomyocytes from Human Induced Pluripotent Stem Cells Using Small Molecule-modulated Differentiation and Subsequent Glucose Starvation

1Stanford Cardiovascular Institute, Stanford University School of Medicine, 2Institute of Stem Cell Biology and Regenerative Medicine, Cardiovascular Medicine Division, Department of Medicine, Child Health Research Institute, Stanford University School of Medicine


JoVE 52628

 JoVE Biology

Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates

1Cytori Therapeutics Inc, 2Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, 3Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, 4Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, 5Regenerative Bioengineering and Repair Laboratory, David Geffen School of Medicine at UCLA


JoVE 50585

123456789107
More Results...
Waiting
simple hit counter