Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Cell Engineering: Methods and techniques used to modify or select cells and develop conditions for growing cells for biosynthetic production of molecules (Metabolic engineering), for generation of tissue structures and organs in vitro (Tissue engineering), or for other Bioengineering research objectives.

The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering

1Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 2Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University, 3Department of Plastic, Hand and Microsurgery, Sana Klinikum Hof GmbH

JoVE 54676


 Bioengineering

Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering

1Department of Chemical Engineering, Rowan University, 2Department of Biological Sciences, Rowan University, 3Department of Biomedical Engineering, Drexel University

JoVE 53704


 Bioengineering

Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration

1Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University, 2NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University, 3Department Electronics, Information and Bioengineering, Politecnico di Milano, 4Department of Chemical and Materials Engineering, University of Alberta, 5National Institute for Nanotechnology, National Research Council (Canada), 6Department of Chemical and Biochemical Engineering, University of Western Ontario

JoVE 52812


 Bioengineering

Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms

1Biomedical Engineering Graduate Program, The University of Western Ontario, 2Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, 3Department of Chemical Engineering, Queen's University, 4Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario

JoVE 55436


 Bioengineering

Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling

1Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 2Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, 4School of Biomedical Engineering, Drexel University

JoVE 55609


 Neuroscience

Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture

1Department of Chemical Engineering and Centre for Regenerative Medicine, University of Bath, 2MRC Centre for Drug Safety Science and Institute of Translational Medicine, University of Liverpool, 3Mechanical Engineering, University College London, 4Department of Applied Mathematics, Liverpool John Moores University

JoVE 53431


 Bioengineering

Recombinant Collagen I Peptide Microcarriers for Cell Expansion and Their Potential Use As Cell Delivery System in a Bioreactor Model

1Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 2Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, 3Fujifilm Manufacturing Europe B.V.

Video Coming Soon

JoVE 57363


 JoVE In-Press

Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry

1Department of Materials Science and Engineering, Massachusetts Institute of Technology, 2Department of Biological Engineering, Massachusetts Institute of Technology, 3Department of Mechanical Engineering, Massachusetts Institute of Technology, 4Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School

JoVE 54201


 Neuroscience

Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development

1Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, 2Department of Surgery, Feinberg School of Medicine, Northwestern University, 3Department of Biomedical Engineering, Northwestern University, 4Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, 5Department of Internal Medicine, University of New Mexico HSC, 6Department of Pathology, University of New Mexico HSC, 7Department of Chemical and Biological Engineering, Northwestern University, 8Chemistry of Life Processes Institute, Northwestern University, 9Department of Surgery, Jesse Brown VA Medical Center

JoVE 53271


 Bioengineering

Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials

1Department of Mechanical Engineering, Carnegie Mellon University, 2Engineering Science and Mechanics Program, Virginia Polytechnic Institute and State University, 3Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, 4Department of Bioengineering, University of Pittsburgh

JoVE 55300


 Bioengineering

Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel

1Department of Chemical Engineering, McGill University, 2Michael Smith Laboratories & Department of Chemical and Biological Engineering, University of British Columbia, 3Michael Smith Laboratories & Department of Pharmaceutical Sciences, University of British Columbia

JoVE 55280


 Bioengineering

Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

1Division of Drug Delivery and Tissue Engineering, University of Nottingham, 2Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 3Division of Immunology and Allergy, School of Molecular Medical Sciences, University of Nottingham, 4Division of Respiratory Medicine, School of Clinical Sciences, University of Nottingham, 5NIHR Respiratory Biomedical Research Unit, University of Leicester, 6School of Sport, Exercise, and Health Sciences, Loughborough University

JoVE 52986


 Bioengineering

Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites for ex vivo Characterization

1Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 2Department of Biomedical Engineering, Case Western Reserve University, 3Department of Electrical Engineering and Computer Science, Case Western Reserve University

JoVE 50078


 Bioengineering

Creation and Transplantation of an Adipose-derived Stem Cell (ASC) Sheet in a Diabetic Wound-healing Model

1Diabetic Center, Tokyo Women's Medical University School of Medicine, 2The Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 3The Department of Anatomy and Developmental Biology, Tokyo Women's Medical University School of Medicine

JoVE 54539


 Medicine

Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair

1Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2Department of Orthopedic Surgery, Maastricht UMC+, 3Department of Orthopaedic Surgery, University Hospital RWTH, 4Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

JoVE 55381


 Bioengineering

Fabrication and Characterization of Griffithsin-modified Fiber Scaffolds for Prevention of Sexually Transmitted Infections

1Department of Chemistry, University of Louisville, 2Department of Pharmacology and Toxicology, University of Louisville, 3Center for Predictive Medicine, University of Louisville, 4Department of Microbiology and Immunology, University of Louisville, 5Department of Bioengineering, University of Louisville

JoVE 56492


 Bioengineering

Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology

1Department of Biology, California Institute of Technology, 2Department of Bioengineering, California Institute of Technology, 3Synthetic Biology Center, Department of Bioengineering, Massachusetts Institute of Technology, 4School of Physics and Astronomy, University of Minnesota

JoVE 50762


 Biology

123456789129
More Results...