Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Chromatin Immunoprecipitation: A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of Chromatin to crosslink the Dna-binding proteins to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific Antibodies. Then, the DNA isolated from the complex can be identified by Pcr amplification and sequencing.

Chromatin Immunoprecipitation (ChIP) Protocol for Low-abundance Embryonic Samples

1Center for Molecular Medicine Cologne (CMMC), University of Cologne, 2Cologne Center for Genomics (CCG), University of Cologne, 3Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Research Center and Systems Biology of Ageing Cologne, University of Cologne

JoVE 56186


Native Chromatin Immunoprecipitation Using Murine Brain Tumor Neurospheres

1Department of Cell and Developmental Biology, University of Michigan Medical School, 2Department of Neurosurgery, University of Michigan Medical School, 3Cancer Research Summer Internship Program (CARSIP), Cancer Biology Program, University of Michigan Medical School, 4Department of Biology, University of Puerto Rico-Río Piedras Campus

JoVE 57016

 Cancer Research

Chromatin Immunoprecipitation

JoVE 5551

Histones are proteins that help organize DNA in eukaryotic nuclei by serving as “scaffolds” around which DNA can be wrapped, forming a complex called “chromatin”. These proteins can be modified through the addition of chemical groups, and these changes affect gene expression. Researchers use a technique called chromatin immunoprecipitation (ChIP) to better understand which DNA regions associate with specific histone modifications or other gene regulatory proteins. Antibodies are used to isolate the protein of interest, and the bound DNA is extracted for analysis. Here, JoVE presents the principles behind ChIP, discussing specific histone modifications and their relationship to gene expression and DNA organization. We then review how to perform a ChIP protocol, and explore the ways scientists are currently using this technique.


Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation

1Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 2A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, 3Department of Biochemistry, National University of Singapore, Singapore

JoVE 3770


Real-time Analysis of Transcription Factor Binding, Transcription, Translation, and Turnover to Display Global Events During Cellular Activation

1Institute for Diabetes and Obesity (IDO), German Center for Diabetes Research (DZD), Helmholtz Zentrum München, 2Institute for Informatics, Ludwig-Maximilians-Universität München, 3Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg

JoVE 56752


Adaptation of Hybridization Capture of Chromatin-Associated Proteins for Proteomics to Mammalian Cells

1Department of Genetics, Texas Biomedical Research Institute, 2Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine, 3Department of Chemistry, University of Wisconsin

Video Coming Soon

JoVE 57140

 JoVE In-Press

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333

 Developmental Biology

Promoter Capture Hi-C: High-Resolution, Genome-Wide Profiling of Promoter Interactions

1Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, 2IJC Building, Campus ICO-Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, 3Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 4Bioinformatics Group, The Babraham Institute, Babraham Research Campus, 5Department of Biological Science, Florida State University

Video Coming Soon

JoVE 57320

 JoVE In-Press

Laser Microirradiation to Study In Vivo Cellular Responses to Simple and Complex DNA Damage

1Department of Biological Chemistry, School of Medicine, University of California, Irvine, 2Beckman Laser Institute and Medical Clinic, University of California, Irvine, 3Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, 4Department of Biomedical Engineering and Surgery, University of California, Irvine

JoVE 56213


Genome-wide Mapping of Drug-DNA Interactions in Cells with COSMIC (Crosslinking of Small Molecules to Isolate Chromatin)

1Department of Biochemistry, University of Wisconsin–Madison, 2Department of Electrical and Computer Engineering, University of Wisconsin–Madison, 3Graduate Program in Cellular and Molecular Biology, University of Wisconsin–Madison, 4The Genome Center, University of Wisconsin–Madison

JoVE 53510


More Results...