Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Cyclin-Dependent Kinases: Protein kinases that control cell cycle progression in all eukaryotes and require physical association with Cyclins to achieve full enzymatic activity. Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events.

Preparation of Primary Acute Lymphoblastic Leukemia Cells in Different Cell Cycle Phases by Centrifugal Elutriation

1Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 2Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, 3Department of Cell and Molecular Biology, St. Jude Children's Research Hospital

Video Coming Soon

JoVE 56418


 JoVE In-Press

Laser Microirradiation to Study In Vivo Cellular Responses to Simple and Complex DNA Damage

1Department of Biological Chemistry, School of Medicine, University of California, Irvine, 2Beckman Laser Institute and Medical Clinic, University of California, Irvine, 3Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, 4Department of Biomedical Engineering and Surgery, University of California, Irvine

Video Coming Soon

JoVE 56213


 JoVE In-Press

An Introduction to Saccharomyces cerevisiae

JoVE 5081

Saccharomyces cerevisiae (commonly known as baker’s yeast) is a single-celled eukaryote that is frequently used in scientific research. S. cerevisiae is an attractive model organism due to the fact that its genome has been sequenced, its genetics are easily manipulated, and it is very easy to maintain in the lab. Because many yeast proteins are similar in sequence and function to those found in other organisms, studies performed in yeast can help us to determine how a particular gene or protein functions in higher eukaryotes (including humans). This video provides an introduction to the biology of this model organism, how it was discovered, and why labs all over the world have selected it as their model of choice. Previous studies performed in S. cerevisiae that have contributed to our understanding of important cellular processes such as the cell cycle, aging, and cell death are also discussed. Finally, the video describes some of the many ways in which yeast cells are put to work in modern scientific research, including protein purification and the study of DNA repair mechanisms and other cellular processes related to Alzheimer’s and Parkinson’s diseases.


 Biology I

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Light-mediated Reversible Modulation of the Mitogen-activated Protein Kinase Pathway during Cell Differentiation and Xenopus Embryonic Development

1Department of Biochemistry, University of Illinois at Urbana-Champaign, 2Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3Neuroscience Program, University of Illinois at Urbana-Champaign, 4Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign

JoVE 55823


 Developmental Biology

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Murine Aortic Crush Injury: An Efficient In Vivo Model of Smooth Muscle Cell Proliferation and Endothelial Function

1Department of Surgery, Baltimore Veterans Affairs Medical Center, 2Department of Surgery, University of Maryland School of Medicine, 3Department of Physiology, University of Maryland School of Medicine, 4Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine

JoVE 55201


 Biology

Results below contain some, but not all of your search terms.
12345678968
More Results...