Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Ear Canal: The narrow passage way that conducts the sound collected by the Ear auricle to the Tympanic membrane.

Preparing and Administering Topical Medications

JoVE 10259

Source: Madeline Lassche, MSNEd, RN and Katie Baraki, MSN, RN, College of Nursing, University of Utah, UT

Topical medications are applied directly to the body surfaces, including the skin and mucous membranes of the eyes, ears, nose, vagina, and rectum. There are many classes of topical medications, such as creams, ointments, lotions, patches, and aerosol sprays. Medications that are applied to the skin to produce slow, controlled, systemic effect are also referred to as transdermal. Transdermal absorption can be altered if lesions, burns, or breakdowns are present at the application site. Many transdermal medications are delivered via adhesive patch to achieve the slow, controlled, systemic effect. The patch should be applied to clean and hairless skin areas that do not undergo excessive movement, such as the back of the shoulder or thigh. Other topical creams or eye ointments should be applied according to the packaging and manufacturer instructions using an application device. When instilling eardrop medications, never occlude the ear canal, as this may increase pressure and rupture the ear drum. Medications that can be administered via a topical route include antibiotics, narcotics, hormones, and even chemotherapeutics. This requires adherence to the five "rights" of medicati


 Nursing Skills

Ear Exam

JoVE 10148

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

This video describes the examination of the ear, beginning with a review of its surface and interior anatomy (Figure 1). The cartilaginous auricle consists of the helix, antihelix, earlobe, and tragus. The mastoid process is positioned just behind the earlobe. The slightly curving auditory canal ends at the tympanic membrane, which transmits sound waves collected by the external ear to the air-filled middle ear. The Eustachian tube connects to the middle ear with the nasopharynx. Vibrations of the tympanic membrane transmit to the three connected ossicles of the middle ear (the malleus, incus, and stapes). The vibrations are transformed into electrical signals in the inner ear, and then carried to the brain by the cochlear nerve. Hearing, therefore, comprises a conductive phase that involves the external and middle ear, and a sensorineural phase that involves the inner ear and cochlear nerve. The auditory canal and the tympanic membrane are examined with the otoscope, a handheld instrument with a light source, a magnifier, and a disposable cone-shaped speculum. It is important to be familiar with the tympanic membrane landmarks (


 Physical Examinations II

A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus)

1Division of Regenerative Medicine, Jikei University School of Medicine, 2Department of Otorhinolaryngology, Jikei University School of Medicine, 3Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 4Laboratory Animal Facilities, Jikei University School of Medicine

Video Coming Soon

JoVE 56574


 JoVE In-Press

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

1Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM, 2Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 3Instituto de Investigación Sanitaria La Paz (IdiPAZ), 4Facultad de Veterinaria, Universidad Complutense de Madrid, 5Departmento de Otorrino laringología, Hospital Universitario La Paz

JoVE 54951


 Biology

Neuro-rehabilitation Approach for Sudden Sensorineural Hearing Loss

1Department of Integrative Physiology, National Institute for Physiological Sciences, 2Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, 3Department of Otorhinolaryngology, Kansai Rosai Hospital, 4Institute for Biomagnetism and Biosignalanalysis, University of Muenster, 5Institute for Epidemiology and Social Medicine, University of Muenster, 6Sokendai Graduate University for Advanced Studies

JoVE 53264


 Behavior

Discovering Middle Ear Anatomy by Transcanal Endoscopic Ear Surgery: A Dissection Manual

1Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 2Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital of Modena, 3Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital of Verona, 4Artificial Hearing Research, Artorg Center for Biomedical Engineering, University of Bern

Video Coming Soon

JoVE 56390


 JoVE In-Press

Cranial Nerves Exam II (VII-XII)

JoVE 10005

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

The cranial nerve examination follows the mental status evaluation in a neurological exam. However, the examination begins with observations made upon greeting the patient. For example, weakness of the facial muscles (which are innervated by cranial nerve VII) can be readily apparent during the first encounter with the patient. Cranial nerve VII (the facial nerve) also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in a patient with facial weakness confirms the involvement of cranial nerve VII. In addition, knowledge of the neuroanatomy helps the clinician to localize the level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII (the acoustic nerve) has two divisions: the hearing (cochlear) division and the vestibular division, which innervates the semi


 Physical Examinations III

A Unified Methodological Framework for Vestibular Schwannoma Research

1Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, 2Department of Otolaryngology, Harvard Medical School, 3Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, 4Program in Speech and Hearing Bioscience and Technology, Harvard Medical School

JoVE 55827


 Cancer Research

Trabecular Meshwork Response to Pressure Elevation in the Living Human Eye

1Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, 2Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, 4Deptartment of Biostatistics, Graduate School of Public Health, University of Pittsburgh

JoVE 52611


 Medicine

Blood Withdrawal II

JoVE 10247

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

The collection of blood from mice and rats for analysis can be done through a variety of methods. Each method of collection has variations in the type of restraint required, the invasiveness of the procedure, and the necessity of a general anesthetic.1Historically, the use of the retro-orbital sinus cavity has been used, but not without debate. The controversy related to the potential tissue damage,or even blindness,caused by retro-orbital bleeds has led to the development of facial and submandibular vein bleeding methods in mice.Blood collection from the saphenous vein in both mice and rats is another technique that has been developed. These procedures do not require anesthesia and therefore are suitable when the use of anesthetics may confound blood results or other data.


 Lab Animal Research

Neck Exam

JoVE 10180

Source: Robert E. Sallis, MD. Kaiser Permanente, Fontana, California, USA

Examination of the neck can be a challenge because of the many bones, joints, and ligaments that make up the underlying cervical spine. The cervical spine is composed of seven vertebrae stacked in gentle C-shaped curve. The anterior part of each vertebra is made up of the thick bony body, which is linked to the body above and below by intervertebral discs. These discs help provide stability and shock absorption to the cervical spine. The posterior elements of the vertebra, which include the laminae, transverse, and spinous processes and the facet joints, form a protective canal for the cervical spinal cord and its nerve roots. The cervical spine supports the head and protects the neural elements as they come from the brain and from the spinal cord. Therefore, injuries or disorders affecting the neck can also affect the underlying spinal cord and have potentially catastrophic consequences. The significant motion that occurs in the neck places the cervical spine at increased risk for injury and degenerative changes. The cervical spine is also a common source of radicular pain in the shoulder. For this reason, the neck should be evaluated as a routine part of every shoulder exam.


 Physical Examinations III

Manipulation of Epileptiform Electrocorticograms (ECoGs) and Sleep in Rats and Mice by Acupuncture

1Department of Sports, Health & Leisure, College of Tourism, Leisure and Sports, Aletheia University, Tainan Campus, 2Department of Neurology, Mackay Memorial Hospital and Mackay Medical College, 3Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4Graduate Institute of Brain & Mind Sciences, College of Medicine, National Taiwan University, 5Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University

JoVE 54896


 Behavior

Stereotaxic Surgery for Excitotoxic Lesion of Specific Brain Areas in the Adult Rat

1Helen Wills Neuroscience Institute, University of California Berkeley, 2Office of Laboratory Animal Care, University of California Berkeley, 3McGovern Institute for Brain Research & The Department of Brain and Cognitive Science, Massachusetts Institute of Technology, 4Integrative Biology Department, University of California Berkeley

JoVE 4079


 Neuroscience

Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI

1Department of Physiology and Pharmacology, University of Western Ontario, 2Department of Psychology, University of Western Ontario, 3Department of Medical Biophysics, University of Western Ontario, 4Brain and Mind Institute, University of Western Ontario, 5Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 6Cerebral Systems Laboratory, University of Western Ontario, 7National Centre for Audiology, University of Western Ontario

JoVE 50872


 Neuroscience

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a


 Physical Examinations III

Laminotomy for Lumbar Dorsal Root Ganglion Access and Injection in Swine

1Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School, 2Department of Radiology (Section of Interventional Pain Management), Mayo Clinic, 3Department of Neurologic Surgery, Mayo Clinic, 4Department of Orthopedic Surgery, Mayo Clinic

Video Coming Soon

JoVE 56434


 JoVE In-Press

Non-restraining EEG Radiotelemetry: Epidural and Deep Intracerebral Stereotaxic EEG Electrode Placement

1Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), 2Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE)

JoVE 54216


 Neuroscience

Isolation and Characterization of Satellite Cells from Rat Head Branchiomeric Muscles

1Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 2Department of Biological Structure, University of Washington School of Medicine, 3Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center

JoVE 52802


 Developmental Biology

Lymph Node Exam

JoVE 10061

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

The lymphatic system has two main functions: to return extracellular fluid back to the venous circulation and to expose antigenic substances to the immune system. As the collected fluid passes through lymphatic channels on its way back to the systemic circulation, it encounters multiple nodes consisting of highly concentrated clusters of lymphocytes. Most lymph channels and nodes reside deep within the body and, therefore, are not accessible to physical exam (Figure 1). Only nodes near the surface can be inspected or palpated. Lymph nodes are normally invisible, and smaller nodes are also non-palpable. However, larger nodes (>1 cm) in the neck, axillae, and inguinal areas are often detectable as soft, smooth, movable, non-tender, bean-shaped masses imbedded in subcutaneous tissue. Lymphadenopathy usually indicates an infection or, less commonly, a cancer in the area of lymph drainage. Nodes may become enlarged, fixed, firm, and/or tender depending on the pathology present. For example, a soft, tender lymph node palpable near the angle of the mandible may indicate an infected tonsil, whereas a firm, enlarged, non-tender lymph


 Physical Examinations II

Analysis of Spinal Cord Blood Supply Combining Vascular Corrosion Casting and Fluorescence Microsphere Technique: A Feasibility Study in an Aortic Surgical Large Animal Model

1Cardiovascular Surgery, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, 2Anesthesiology and Intensive Care, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg

Video Coming Soon

JoVE 56222


 JoVE In-Press

Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability

1Wolfson Centre for Age-Related Diseases, King's College London, University of London, 2Department of Neuroimaging, James Black Centre, Institute of Psychiatry, King's College London, University of London, 3Institute of Neuroscience and Psychology, Wellcome Surgical Institute, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, 4Research Service, Edward Hines Jr. VA Hospital, 5Neurology Service, Edward Hines Jr. VA Hospital, 6Department of Molecular Pharmacology and Therapeutics, Neuroscience Research Institute, Loyola University Chicago, 7Department of Oncology, The Gray Institute for Radiation, Oncology and Biology, University of Oxford

JoVE 53106


 Medicine

12345678912
More Results...