Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Ear, Inner: The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (Cochlea; Vestibular labyrinth; and Semicircular canals) in the Temporal bone. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (Cochlear duct; Saccule and utricle; and Semicircular ducts) forming a continuous space enclosed by Epithelium and connective tissue. These spaces are filled with Labyrinthine fluids of various compositions.
Results below contain some, but not all of your search terms.

Rodent Identification I

JoVE 10189

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

A fundamental requirement of biomedical research is the proper identification of research animals. It is essential that the right animal is utilized for procedures and data collection. Laboratory mice and rats can be identified with the following permanent methods: ear tags, ear punch codes, microchip implantation, tail tattoos for adult mice, and toe tattoos for neonates. Temporary methods of dyes and marking pens can also be used for acute studies. This video covers the technical aspects of ear tagging and punching for mice and rats, as well as the benefits of each with respect to the type of research being conducted on the animals. Knowledge of the basic manual restraint techniques for each animal (covered in a separate video) is required for these identification methods to be properly accomplished.


 Lab Animal Research

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Inducing Ischemia-reperfusion Injury in the Mouse Ear Skin for Intravital Multiphoton Imaging of Immune Responses

1Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, 2Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 3Lee Kong Chian School of Medicine, Nanyang Technological University, 4Centenary Institute for Cancer Medicine and Cell Biology, 5Discipline of Dermatology, University of Sydney, 6Department of Dermatology, Royal Prince Alfred Hospital, 7LSI Immunology Programme, National University of Singapore, 8School of Biological Sciences, Nanyang Technological University

JoVE 54956


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

1Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM, 2Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 3Instituto de Investigación Sanitaria La Paz (IdiPAZ), 4Facultad de Veterinaria, Universidad Complutense de Madrid, 5Departmento de Otorrino laringología, Hospital Universitario La Paz

JoVE 54951


 Biology

Results below contain some, but not all of your search terms.

Neuro-rehabilitation Approach for Sudden Sensorineural Hearing Loss

1Department of Integrative Physiology, National Institute for Physiological Sciences, 2Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, 3Department of Otorhinolaryngology, Kansai Rosai Hospital, 4Institute for Biomagnetism and Biosignalanalysis, University of Muenster, 5Institute for Epidemiology and Social Medicine, University of Muenster, 6Sokendai Graduate University for Advanced Studies

JoVE 53264


 Behavior

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Preparing and Administering Topical Medications

JoVE 10259

Source: Madeline Lassche, MSNEd, RN and Katie Baraki, MSN, RN, College of Nursing, University of Utah, UT

Topical medications are applied directly to the body surfaces, including the skin and mucous membranes of the eyes, ears, nose, vagina, and rectum. There are many classes of topical medications, such as creams, ointments, lotions, patches, and aerosol sprays. Medications that are applied to the skin to produce slow, controlled, systemic effect are also referred to as transdermal. Transdermal absorption can be altered if lesions, burns, or breakdowns are present at the application site. Many transdermal medications are delivered via adhesive patch to achieve the slow, controlled, systemic effect. The patch should be applied to clean and hairless skin areas that do not undergo excessive movement, such as the back of the shoulder or thigh. Other topical creams or eye ointments should be applied according to the packaging and manufacturer instructions using an application device. When instilling eardrop medications, never occlude the ear canal, as this may increase pressure and rupture the ear drum. Medications that can be administered via a topical route include antibiotics, narcotics, hormones, and even chemotherapeutics. This requires adherence to the five "rights" of medicati


 Nursing Skills

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Discovering Middle Ear Anatomy by Transcanal Endoscopic Ear Surgery: A Dissection Manual

1Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 2Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital of Modena, 3Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital of Verona, 4Artificial Hearing Research, Artorg Center for Biomedical Engineering, University of Bern

Video Coming Soon

JoVE 56390


 JoVE In-Press

Results below contain some, but not all of your search terms.

Ear Exam

JoVE 10148

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

This video describes the examination of the ear, beginning with a review of its surface and interior anatomy (Figure 1). The cartilaginous auricle consists of the helix, antihelix, earlobe, and tragus. The mastoid process is positioned just behind the earlobe. The slightly curving auditory canal ends at the tympanic membrane, which transmits sound waves collected by the external ear to the air-filled middle ear. The Eustachian tube connects to the middle ear with the nasopharynx. Vibrations of the tympanic membrane transmit to the three connected ossicles of the middle ear (the malleus, incus, and stapes). The vibrations are transformed into electrical signals in the inner ear, and then carried to the brain by the cochlear nerve. Hearing, therefore, comprises a conductive phase that involves the external and middle ear, and a sensorineural phase that involves the inner ear and cochlear nerve. The auditory canal and the tympanic membrane are examined with the otoscope, a handheld instrument with a light source, a magnifier, and a disposable cone-shaped speculum. It is important to be familiar with the tympanic membrane landmarks (


 Physical Examinations II

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Dichotic Listening

JoVE 10101

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University

It is a well-known fact that the human ability to process incoming stimuli is limited. Nonetheless, the world is complicated, and there are always many things going on at once. Selective attention is the mechanism that allows humans and other animals to control which stimuli get processed and which become ignored. Think of a cocktail party: a person couldn’t possibly attend to all of the conversations taking place at once. However, everyone has the ability to selectively listen to one conversation, leading all the rest to become unattended to and nothing more than background noise. In order to study how people do this, researchers simulate a more controlled cocktail party environment by playing sounds to participants dichotically, i.e., by playing different sounds simultaneously to each ear. This is called a dichotic listening paradigm. This experiment demonstrates standard procedures for investigating selective auditory attention with a paradigm called dichotic listening.


 Cognitive Psychology

Results below contain some, but not all of your search terms.

A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus)

1Division of Regenerative Medicine, Jikei University School of Medicine, 2Department of Otorhinolaryngology, Jikei University School of Medicine, 3Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 4Laboratory Animal Facilities, Jikei University School of Medicine

Video Coming Soon

JoVE 56574


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent

1Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, 2Department of Nuclear Medicine, Eberhard Karls University of Tübingen, 3Department of Dermatology, Eberhard Karls University of Tübingen

JoVE 55180


 Immunology and Infection

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

1Life Sciences Division, Lawrence Berkeley National Laboratory, 2Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 3National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory

JoVE 51673


 Bioengineering

Results below contain some, but not all of your search terms.

Near-infrared Navigation System for Real-time Visualization of Blood Flow in Vascular Grafts

1Department of Radiology, University of Missouri, 2Office of Animal Resources, University of Missouri, 3Bioengineering, University of Missouri, 4Biomedical Science, University of Missouri, 5Surgery - Division of Cardiothoracic Surgery, University of Missouri, 6MU-iCATS, University of Missouri, 7Medical Pharmacology and Physiology, University of Missouri

Video Coming Soon

JoVE 54927


 JoVE In-Press

Results below contain some, but not all of your search terms.

A Method for Systematic Electrochemical and Electrophysiological Evaluation of Neural Recording Electrodes

1School of Psychological Science, La Trobe University, 2Intelligent Polymer Research Institute, University of Wollongong, 3ARC Centre of Excellence for Electromaterials Science, 4Health Innovations Research Institute, College of Science, Engineering, and Health, RMIT University

JoVE 51084


 Neuroscience

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Cranial Nerves Exam II (VII-XII)

JoVE 10005

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

The cranial nerve examination follows the mental status evaluation in a neurological exam. However, the examination begins with observations made upon greeting the patient. For example, weakness of the facial muscles (which are innervated by cranial nerve VII) can be readily apparent during the first encounter with the patient. Cranial nerve VII (the facial nerve) also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in a patient with facial weakness confirms the involvement of cranial nerve VII. In addition, knowledge of the neuroanatomy helps the clinician to localize the level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII (the acoustic nerve) has two divisions: the hearing (cochlear) division and the vestibular division, which innervates the semi


 Physical Examinations III

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI

1Department of Physiology and Pharmacology, University of Western Ontario, 2Department of Psychology, University of Western Ontario, 3Department of Medical Biophysics, University of Western Ontario, 4Brain and Mind Institute, University of Western Ontario, 5Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 6Cerebral Systems Laboratory, University of Western Ontario, 7National Centre for Audiology, University of Western Ontario

JoVE 50872


 Neuroscience

Results below contain some, but not all of your search terms.

Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development

1Department of Veterinary Science, University of Wisconsin, Madison, 2Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 3Present address: Department of Pulmonary Medicine, University of Michigan, Ann Arbor, MI, 4Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI

JoVE 2466


 Biology

Results below contain some, but not all of your search terms.

Rodent Identification II

JoVE 10182

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Animal records must be accurately maintained to ensure that data collection is correct. Records range from maintaining information on cage cards to having a detailed database with all of the relevant information on each animal. The primary component of recordkeeping is the individual identification of research animals. There are a variety of methods suitable for identifying mice and rats. This video describes the procedural techniques for tattooing, microchip placement, and temporary identification methods, and also explores the benefits of each.


 Lab Animal Research

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678911
More Results...