Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Electrochemical Techniques: The utilization of an electrical current to measure, analyze, or alter chemicals or chemical reactions in solution, cells, or tissues.

In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries

1School of Chemistry, University of Sydney, 2Institute for Superconducting & Electronic Materials, University of Wollongong, 3Australian Synchrotron, 4Australian Nuclear Science and Technology Organisation, 5School of Mechanical, Materials, and Mechatronic Engineering, University of Wollongong, 6School of Chemistry, University of New South Wales

JoVE 52284


 Engineering

Measuring Electrical Conductivity of Living Microbial Biofilms

1Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 2George Mason University, 3Chemistry Division, Naval Research Laboratory, 4Departments of Physics, Biological Sciences, and Chemistry, University of Southern California, 5Department of Chemical Engineering and Materials Science, Michigan State University

Video Coming Soon

JoVE 54671


 JoVE In-Press

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques

1Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 2Department of Chemistry, University of Illinois at Chicago, 3Stanford Synchrotron Radiation Lightsource, 4Haldor Topsøe A/S, 5PolyPlus Battery Company

JoVE 50594


 Engineering

Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat

JoVE 5698

Source: Laboratory of Dr. Yuriy Román — Massachusetts Institute of Technology

A potentiostat/galvanostat (often referred to as simply a potentiostat) is an instrument that measures current at an applied potential (potentiostatic operation) or measures potential at an applied current (galvanostatic operation) (Figure 1). It is the most commonly used instrument in the electrochemical characterization of anode and cathode materials for fuel cells, electrolyzers, batteries, and supercapacitors. Conventionally, these anode and cathode materials are interfaced with a potentiostat via a three-electrode electrochemical cell. The electrode leads from the potentiostat are connected to the reference electrode, the counter electrode (often called the auxiliary electrode), and the working electrode (which contains the test material of interest). The electrochemical cell is then filled with a high ionic strength electrolyte solution, such as an acidic, alkaline, or salt solution. The media for this high ionic strength solution is typically aqueous; however, for applications necessitating higher operating cell potential windows, such as batteries and supercapacitors, non-aqueous media is often used. The cell media is degassed with an inert gas (to prevent unwanted side react


 Analytical Chemistry

Bacterial Detection & Identification Using Electrochemical Sensors

1Research Service, Veterans Affairs Greater Los Angeles Healthcare System, 2Department of Urology, The David Geffen School of Medicine, University of California, Los Angeles, 3GeneFluidics, 4Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, 5Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles

JoVE 4282


 Bioengineering

A Method for Systematic Electrochemical and Electrophysiological Evaluation of Neural Recording Electrodes

1School of Psychological Science, La Trobe University, 2Intelligent Polymer Research Institute, University of Wollongong, 3ARC Centre of Excellence for Electromaterials Science, 4Health Innovations Research Institute, College of Science, Engineering, and Health, RMIT University

JoVE 51084


 Neuroscience

Multi-analyte Biochip (MAB) Based on All-solid-state Ion-selective Electrodes (ASSISE) for Physiological Research

1Department of Agricultural and Biological Engineering, Birck-Bindley Physiological Sensing Facility, Purdue University, 2NASA Ames Research Center, 3Department of Chemistry, Pennsylvania State University Hazleton, 4Cooley LLP, 5NASA Life and Physical Sciences, Human Exploration and Operations Mission Directorate, NASA Headquarters

JoVE 50020


 Bioengineering

Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors

1Department of Biological Systems Engineering, University of Wisconsin-Madison, 2Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University, 3Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 4Department of Physics, School of Science, Tianjin University, 5Department of Chemistry, University of Wisconsin-Madison, 6School of Freshwater Sciences, University of Wisconsin-Milwaukee

JoVE 53339


 Engineering

A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites

1School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou, 2Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science & Medical Engineering, Southeast University, 3School of Public Health, Tianjin Medical University, 4British Columbia Academy, Nanjing Foreign Language School

Video Coming Soon

JoVE 56445


 JoVE In-Press

The Use of a β-lactamase-based Conductimetric Biosensor Assay to Detect Biomolecular Interactions

1Life Science Department, University of Liège, 2Institute of Condensed Matter and Nanoscience, Catholic University of Louvain, 3Laboratory of Clinical Microbiology, Catholic University of Louvain, 4Biotechnology Department, CER Group

Video Coming Soon

JoVE 55414


 JoVE In-Press

Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

1Department of Physics, University of California at Berkeley, 2Department of Chemistry, University of California at Berkeley, 3Department of Chemical and Biomolecular Engineering, University of California at Berkeley, 4National Institute for Materials Science (Japan), 5Materials Sciences Division, Lawrence Berkeley National Laboratory, 6Kavli Energy NanoSciences Institute, University of California at Berkeley and Lawrence Berkeley National Laboratory

JoVE 52711


 Engineering

Dielectric RheoSANS — Simultaneous Interrogation of Impedance, Rheology and Small Angle Neutron Scattering of Complex Fluids

1NIST Center for Neutron Research, National Institute of Standards and Technology, 2Department of Materials Science and Engineering, University of Maryland, 3Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware

JoVE 55318


 Engineering

Assessment of Dopaminergic Homeostasis in Mice by Use of High-performance Liquid Chromatography Analysis and Synaptosomal Dopamine Uptake

1Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and Department of Neuroscience and Pharmacology, University of Copenhagen

JoVE 56093


 Neuroscience

Examination of Rapid Dopamine Dynamics with Fast Scan Cyclic Voltammetry During Intra-oral Tastant Administration in Awake Rats

1Interdepartmental Neuroscience Program, Yale University, 2Department of Biotechnical and Clinical Laboratory Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, 3Department of Psychiatry, Yale School of Medicine, 4Department of Cellular and Molecular Physiology, Yale School of Medicine

JoVE 52468


 Behavior

12345678985
More Results...