Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 

Optimized Protocol for the Extraction of Proteins from the Human Mitral Valve

1Centro Cardiologico Monzino IRCCS, 2Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, 3Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 4Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, Centro Cardiologico Monzino IRCCS

JoVE 55762


 Biochemistry

A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples

1Egg Safety and Quality Research Unit, USDA-Agricultural Research Service, 2Poultry Microbiological Safety and Processing Research Unit, USDA-Agricultural Research Service, 3Department of Biochemistry and Biophysics, Oregon State University, 4College of Public Health, University of Georgia, 5Department of Biological Sciences, Center for Microbial Genetics and Genomics, Northern Arizona University

JoVE 52161


 Biology

Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction

1Department of Pathology & Molecular Medicine, Queen's University, 2Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 3Department of Surgery, Division of Urology, McGill University, 4Transformative Pathology Program, Ontario Institute for Cancer Research (OICR)

JoVE 54299


 Biology

Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice

1Department of Pharmaceutical Sciences, University of Toronto, 2Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario Cancer Institute, University Health Network

Video Coming Soon

JoVE 56159


 JoVE In-Press

Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 2Center for Measurement Standards, Industrial Technology Research Institute, 3National Synchrotron Radiation Research Center, 4Department of Chemistry, National Changhua University of Education

JoVE 53500


 Bioengineering

A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

1Department of Agronomy and Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, 2Department of Soil Science, University of Wisconsin - Madison, 3Department of Soil, Water, and Climate, University of Minnesota, 4Faculty of Science and Engineering, Curtin University

JoVE 55310


 Environment

Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils

1Department of Renewable Resources, University of Alberta, 2Department of Science, Augustana Faculty, University of Alberta, 3Laboratoire Génie Civil et géo-Environnement, Université de Lille, 4Department of Earth and Environmental Sciences, Mount Royal University, 5Forest Ecology & Production, Great Lakes Forestry Centre, Natural Resources Canada

JoVE 54360


 Environment

Solid-Liquid Extraction

JoVE 5538

Source: Laboratory of Dr. Jay Deiner — City University of New York

Extraction is a crucial step in most chemical analyses. It entails removing the analyte from its sample matrix and passing it into the phase required for spectroscopic or chromatographic identification and quantification. When the sample is a solid and the required phase for analysis is a liquid, the process is called solid-liquid extraction. A simple and broadly applicable form of solid-liquid extraction entails combining the solid with a solvent in which the analyte is soluble. Through agitation, the analyte partitions into the liquid phase, which may then be separated from the solid through filtration. The choice of solvent must be made based on the solubility of the target analyte, and on the balance of cost, safety, and environmental concerns.


 Organic Chemistry

Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA

1Department of Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, 2Graduate School of Human Development and Environment, Kobe University, 3Faculty of Science and Technology, Ryukoku University, 4Okinawa Churashima Research Center, 5Graduate School of Simulation Studies, University of Hyogo

JoVE 54741


 Environment

Soxhlet Extraction of Lipid Biomarkers from Sediment

JoVE 10096

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

Every lab needs standards that track the performance, accuracy, and precision of its instruments over time to ensure a measurement made today is the same as a measurement made a year from now (Figure 1). Because standards must test the performance of instruments over a long period of time, large volumes of the standards are often required. Many chemical standards can be purchased from retail scientific companies, like Sigma-Aldrich and Fisher. However, some compounds that occur in nature and that are relevant to paleoclimatic studies have not yet been isolated and purified for purchase. Therefore, these compounds need to be extracted from natural samples, and because of the large volumes of standards required, large volumes of sediment need to be extracted. The Accelerated Solvent Extraction (Dionex) and sonication extractions are not appropriate for the extraction of such large sediment volumes. In these circumstances, a Soxhlet extraction is used. Figure 1. Schematic depicting how chemical standard tracks the performance of an instrument through time. The dashed line represents a


 Earth Science

Community DNA Extraction from Bacterial Colonies

JoVE 10218

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Luisa Ikner

Traditional methods of analysis for microbial communities within soils have usually involved either cultural assays utilizing dilution and plating methodology on selective and differential media or direct count assays. Direct counts offer information about the total number of bacteria present, but give no information about the number or diversity of populations present within the community. Plate counts allow enumeration of total cultural or selected cultural populations, and hence provide information on the different populations present. However, since less than 1% of soil bacteria are readily culturable, cultural information offers only a piece of the picture. The actual fraction of the community that can be cultured depends on the medium chosen for cultural counts. Any single medium will select for the populations that are best suited to that particular medium. In recent years, the advantages of studying community DNA extracted from soil samples have become apparent. This nonculture-based approach is thought to be more representative of the actual community present than culture-based approaches. In addition to providing information about the types of populations present, this


 Environmental Microbiology

Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting

1Team Alzheimer & Tauopathies, Jean-Pierre Aubert Research Centre, Inserm UMR 837, 2EA 4308-Department of Reproductive Biology-Spermiology-CECOS, CHRU-Lille, 3EA2686-Laboratorie d'Immunologie, Faculté de Médecine - Pôle Recherche, 4Department of Neurology, CHRU-Lille

JoVE 51339


 Neuroscience

Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction

JoVE 10097

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

The distribution of a group of organic biomarkers called glycerol-dialkyl glycerol-tetraethers (GDGTs), produced by a suite of archaea and bacteria, were found in modern sediments to change in a predictable manner in response to air or water temperature1,2. Therefore, the distribution of these biomarkers in a sequence of sediments of known age can be used to reconstruct the evolution of air and/or water temperature on decadal to millennial timescales (Figure 1). The production of long high-resolution records of past climates, called paleoclimatology, depends on the rapid analysis of hundreds, possibly thousands of samples. Older extraction techniques, such as sonication or Soxhlet, are too slow. However, the newer Accelerated Solvent Extraction technique was designed with efficiency in mind. Figure 1. An example of a paleoclimate record showing changes in sea surface temperature (SST) in the eastern Mediterranean Sea during the past ~27,000 years3. This record comprises ~115 samples and is based on the isoprenoidal GDGT-based TEX86 SS


 Earth Science

Extraction and Purification of Polyphenols from Freeze-dried Berry Powder for the Treatment of Vascular Smooth Muscle Cells In Vitro

1Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, 2Department of Nutrition, Food and Exercise Sciences, Florida State University, 3Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University

JoVE 55605


 Chemistry

Sonication Extraction of Lipid Biomarkers from Sediment

JoVE 10055

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

The material comprising the living "organic" share of any ecosystem (leaves, fungi, bark, tissue; Figure 1) differs fundamentally from the material of the non-living "inorganic" share (rocks and their constituent minerals, oxygen, water, metals). Organic material contains carbon linked to a series of other carbon and hydrogen molecules (Figure 2), which distinguishes it from inorganic material. Carbon's wide valency range (-4 to +4) allows it to form up to four separate covalent bonds with neighboring atoms, usually C, H, O, N, S, and P. It can also share up to three covalent bonds with a single other atom, such as the triple bond in the often-poisonous cyanide, or nitrile, group. Over the past 4.6 billion years, this flexibility has led to an amazing array of chemical structures, which vary in size, complexity, polarity, shape, and function. The scientific field of organic geochemistry is concerned with the identification and characterization of the whole range of detectable organic compounds, called biomarkers, produced by life on this planet, as we


 Earth Science

IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation

1Center for Biological Security, Robert Koch-Institute, 2CICVyA - INTA Castelar, Instituto de Virología, 3Center of Molecular Immunology, Ciudad de la Habana, Cuba, 4Department of Biology, Chemistry, Pharmacy, Institute of Biology-Neurobiology, Free University of Berlin, 5Institut of Pharmacology, Charité-University Medicine of Berlin

JoVE 3084


 Immunology and Infection

12345678927
More Results...