Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Facial Nerve: The 7th cranial nerve. The facial nerve has two parts, the larger motor root which may be called the facial nerve proper, and the smaller intermediate or sensory root. Together they provide efferent innervation to the muscles of facial expression and to the lacrimal and salivary glands, and convey afferent information for taste from the anterior two-thirds of the tongue and for touch from the external ear.

Cranial Nerves Exam II (VII-XII)

JoVE 10005

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

The cranial nerve examination follows the mental status evaluation in a neurological exam. However, the examination begins with observations made upon greeting the patient. For example, weakness of the facial muscles (which are innervated by cranial nerve VII) can be readily apparent during the first encounter with the patient. Cranial nerve VII (the facial nerve) also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in a patient with facial weakness confirms the involvement of cranial nerve VII. In addition, knowledge of the neuroanatomy helps the clinician to localize the level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII (the acoustic nerve) has two divisions: the hearing (cochlear) division and the vestibular division, which innervates the semi


 Physical Examinations III

Cranial Nerves Exam I (I-VI)

JoVE 10091

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's/Massachusetts General Hospital, Boston, Massachusetts, USA

During each section of the neurological testing, the examiner uses the powers of observation to assess the patient. In some cases, cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction; therefore, any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical; therefore, while performing the examination, the examiner should compare each side to the other. A physician should approach the examination in a


 Physical Examinations III

A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus)

1Division of Regenerative Medicine, Jikei University School of Medicine, 2Department of Otorhinolaryngology, Jikei University School of Medicine, 3Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 4Laboratory Animal Facilities, Jikei University School of Medicine

Video Coming Soon

JoVE 56574


 JoVE In-Press

Transplantation of Olfactory Ensheathing Cells to Evaluate Functional Recovery after Peripheral Nerve Injury

1UPRES EA3830, Institute for Research and Innovation in Biomedicine, University of Rouen, 2Neuroscience, Karolinska Institutet, 3Otorhinolaryngology, Head and Neck Surgery Department, Rouen University Hospital, 4Otorhinolaryngology, Head and Neck Surgery Department, Amiens University Hospital

JoVE 50590


 Neuroscience

Isolation and Characterization of Satellite Cells from Rat Head Branchiomeric Muscles

1Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 2Department of Biological Structure, University of Washington School of Medicine, 3Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center

JoVE 52802


 Developmental Biology

Discovering Middle Ear Anatomy by Transcanal Endoscopic Ear Surgery: A Dissection Manual

1Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 2Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital of Modena, 3Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital of Verona, 4Artificial Hearing Research, Artorg Center for Biomedical Engineering, University of Bern

Video Coming Soon

JoVE 56390


 JoVE In-Press

A Unified Methodological Framework for Vestibular Schwannoma Research

1Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, 2Department of Otolaryngology, Harvard Medical School, 3Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, 4Program in Speech and Hearing Bioscience and Technology, Harvard Medical School

JoVE 55827


 Cancer Research

Use of the Operant Orofacial Pain Assessment Device (OPAD) to Measure Changes in Nociceptive Behavior

1Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, 2Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, 3Stoelting Co., 4Department of Orthodontics, University of Florida

JoVE 50336


 Behavior

Orthotopic Hind Limb Transplantation in the Mouse

1Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, 2Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 3Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital and School of Medicine, 4Department of General, Visceral and Transplant Surgery, Charite Berlin

JoVE 53483


 Medicine

Physiological Correlates of Emotion Recognition

JoVE 10297

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

The autonomic nervous system (ANS) controls the activity of the body's internal organs and regulates changes in their activity depending on the current environment. The vagus nerve, which innervates many of the internal organs, is an important part of the system. When our brain senses danger, vagal tone is inhibited, leading to a set of changes in the body designed to make us more prepared to fight or flee; for example, our heart rate increases, our pupils dilate, and we breath more quickly. Conversely, when the vagal system is activated, these physiological responses are inhibited, leading to a calmer state. The vagus nerve, then, acts as a kind of "brake" on our arousal. One interesting consequence of this calmer state is that it tends to promote social interaction-when we are not tensed and afraid of our immediate environment we are instead receptive to interacting with others. Poor functioning of this regulatory mechanism, therefore, may be associated with difficulties in social behavior. One index of autonomic regulation is heart rate variability (HRV). HRV is a measure of how much the gap between one beat and the next varies over time. High HRV means there are continual fluctuations in the


 Neuropsychology

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

1Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM, 2Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 3Instituto de Investigación Sanitaria La Paz (IdiPAZ), 4Facultad de Veterinaria, Universidad Complutense de Madrid, 5Departmento de Otorrino laringología, Hospital Universitario La Paz

JoVE 54951


 Biology

Ultrasound-guided Botulinum Toxin-A Injections: A Method of Treating Sialorrhea

1Clinical and Biological Sciences Department, Neurology Unit, University of Torino, San Luigi Gonzaga Hospital, 2Oncology Department, Radiology Unit, University of Torino, San Luigi Gonzaga Hospital, 3Clinical and Biological Sciences Department, Dietologic and Nutrition Unit, University of Torino, San Luigi Gonzaga Hospital

JoVE 54606


 Medicine

Improved 3D Hydrogel Cultures of Primary Glial Cells for in Vitro Modelling of Neuroinflammation

1Department of Psychiatry, University of Alberta, 2Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, 3Department of Chemical and Materials Engineering, University of Alberta, 4Division of Physical Medicine and Rehabilitation, University of Alberta, 5Centre for Neuroscience, University of Alberta

Video Coming Soon

JoVE 56615


 JoVE In-Press

Lateral Canthotomy and Inferior Cantholysis

JoVE 10266

Source: James W Bonz, MD, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

Lateral canthotomy is a potentially eyesight-saving procedure when performed emergently for an orbital compartment syndrome. An orbital compartment syndrome results from a buildup of pressure behind the eye; as pressure mounts, both the optic nerve and its vascular supply are compressed, rapidly leading to nerve damage and blindness if the pressure is not quickly relieved. The medial and lateral canthal tendons hold the eyelids firmly in place forming an anatomical compartment with limited space for the globe. In an orbital compartment syndrome, pressure rapidly increases as the globe is forced against the eyelids. Lateral canthotomy is the procedure by which the lateral canthal tendon is severed, thereby releasing the globe from its fixed position. Often, severing of the lateral canthal tendon alone is not enough to release the globe and the inferior portion (inferior crus) of the lateral canthal tendon also needs to be severed (inferior cantholysis). This increases precious space behind the eye by allowing the globe to become more proptotic, resulting in decompression. Most frequently, orbital compartment syndrome is the result of acute facial trauma, with the subsequent development of a retrobulbar


 Emergency Medicine and Critical Care

The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering

1Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 2Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University, 3Department of Plastic, Hand and Microsurgery, Sana Klinikum Hof GmbH

JoVE 54676


 Bioengineering

A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation

1Department of Microbiology, New York University School of Medicine, 2Molecular Neurobiology Program, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 3Department of Otolaryngology, New York University School of Medicine, 4Department of Cell Biology, New York University School of Medicine, 5Department of Physiology and Neuroscience, New York University School of Medicine, 6Department of Psychiatry, New York University School of Medicine, 7Center for Neural Science, New York University School of Medicine

JoVE 3823


 Immunology and Infection

12345678919
More Results...