Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Factor VIII: Blood-coagulation factor Viii. Antihemophilic factor that is part of the factor Viii/von Willebrand factor complex. Factor Viii is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin.

Recombinant DNA

JoVE 10808

Scientists create recombinant DNA by combining DNA from different sources—often, other species—in the laboratory. DNA cloning allows researchers to study specific genes by inserting them into easily manipulated cells, such as bacteria. Organisms that contain recombinant DNA are known as genetically modified organisms (GMOs). Recombinant DNA technology produces organisms with new genes that can benefit science, medicine, and agriculture. Creation of recombinant DNA involves inserting a gene of interest into a vector—a vehicle that carries foreign DNA into host cells for DNA replication and protein expression. The most commonly used cloning vectors are plasmids, small circular pieces of DNA that replicate independently from the host’s chromosomal DNA. To create recombinant DNA, both the donor DNA, including the gene of interest, and the vector are cut at specific nucleotide sequences—called restriction sites—using restriction enzymes. The enzyme DNA ligase seals the sugar-phosphate backbone where the gene of interest and plasmid connect. The result is a recombinant DNA molecule consisting of a vector with an integrated piece of donor DNA—called an insert. A scientist may then introduce this hybrid DNA molecule into a host organism—typically bacteria or yeast—where it easily and rapidly replicat

 Core: Biotechnology

A Microfluidic Flow Chamber Model for Platelet Transfusion and Hemostasis Measures Platelet Deposition and Fibrin Formation in Real-time

1Transfusion Research Center, Belgian Red Cross-Flanders, 2Faculty of Medicine and Health Sciences, Ghent University, 3Blood Service, Belgian Red Cross-Flanders, 4Department of Public Health and Primary Care, KULeuven - University of Leuven

JoVE 55351

 Bioengineering

Experimental and Imaging Techniques for Examining Fibrin Clot Structures in Normal and Diseased States

1Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 2Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 3George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology

JoVE 52019

 Medicine
More Results...