Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Food Additives: Substances which are of little or no nutritive value, but are used in the processing or storage of foods or animal feed, especially in the developed countries; includes Antioxidants; Food preservatives; Food coloring agents; Flavoring agents; Anti-infective agents (both plain and Local); Vehicles; Excipients and other similarly used substances. Many of the same substances are Pharmaceutic aids when added to pharmaceuticals rather than to foods.

Genetic Engineering of an Unconventional Yeast for Renewable Biofuel and Biochemical Production

1Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 2NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 3Food Science and Chemical Engineering, Singapore Institute of Technology

JoVE 54371


 Genetics

Generation of Electronic Cigarette Aerosol by a Third-Generation Machine-Vaping Device: Application to Toxicological Studies

1Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 2Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, 3SCIREQ Scientific Respiratory Equipment Inc.

JoVE 58095


 Chemistry

Crystallization of Salicylic Acid via Chemical Modification

JoVE 10407

Source: Kerry M. Dooley and Michael G. Benton, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

Processing of biochemicals involves unit operations such as crystallization, ultracentrifugation, membrane filtration, and preparative chromatography, all of which have in common the need to separate large from small molecules, or solid from liquid. Of these, crystallization is the most important from a tonnage standpoint. For that reason, it is commonly employed in the pharmaceutical, chemical and food processing industries. Important biochemical examples include chiral separations,1 purification of antibiotics,2 separation of amino acids from precursors,3 and many other pharmaceutical,4-5 food additive,6-7 and agrochemical purifications.8 The control of crystal morphology and size distribution is critical to process economics, as these factors affect the costs of downstream processing operations such as drying, filtration, and solids conveying. For more information about crystallization, consult a specialized textbook or a Unit Operations textbook.9 The crystallizer unit (Figure 1) enables study of: (a)


 Chemical Engineering

More Results...