Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Food, Genetically Modified: Food derived from genetically modified organisms (Organisms, Genetically modified).

Testing For Genetically Modified Foods

JoVE 10044

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Genetic modification of foods has been a controversial issue due to debated concerns over health and environmental safety. This experiment demonstrates technical understanding of how food DNA is genetically identified, allowing for educated decision making about the safety and potential dangers of using genetically modified organisms (GMOs) in food supplies. Polymerase Chain Reaction (PCR) is used to amplify food DNA to test for the presence of genetically modified DNA in food products. Presence of specific DNA bands is detected by using gel electrophoresis to pull extracted food DNA through a 3% agarose gel, a concentration dense enough to separate the bands of DNA containing the genetically modified DNA. Several controls are used in the electrophoresis procedure to ensure DNA is successfully extracted from test foods (plant primer), and to provide known examples of both genetically modified DNA (purchased genetically modified DNA) and non-genetically modified DNA (purchased certified non-GMO food control).


 Environmental Science

An Experimental Model of Diet-Induced Metabolic Syndrome in Rabbit: Methodological Considerations, Development, and Assessment

1CIBERCV, Instituto de Salud Carlos III, 2Department of Physiology, Universitat de València, 3INCLIVA, 4Department of Electronic Engineering, Universidad Politécnica de Valencia, 5UCIM, Universitat de València, 6Department of Physiotherapy, Universitat de València

Video Coming Soon

JoVE 57117


 JoVE In-Press

Mass Production of Genetically Modified Aedes aegypti for Field Releases in Brazil

1Oxitec Ltd, 2Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 3Departamento de Epidemiologia, Universidade de São Paulo, 4Moscamed Brasil, 5Deptartment of Zoology, University of Oxford, 6Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)

JoVE 3579


 Environment

Fundamentals of Breeding and Weaning

JoVE 10293

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Millions of mice and rats are bred for use in biomedical research each year. Worldwide, there are several large commercial breeding facilities that supply mice to research laboratories, but many facilities choose to also breed mice and rats in-house to reduce costs and increase research options. When breeding in the animal facility, researchers are able to manipulate the genetics of the animals, time the pregnancies to meet the needs of the research, and work with embryos and neonates as required. Mice and rats can be bred in a variety of schemes and methods. Technical procedures, such as the use of vaginal cytology, visualization of the vaginal area, and observation of copulatory plugs, have been developed to assist with the synchronization of breeding to correspond to research requirements. This manuscript is an overview of the basic fundamentals of mouse and rat breeding and technical procedures used. More detailed descriptions of the complex breeding schemes, and the full description of the methods for vaginal cytology, are available in the list of references.


 Lab Animal Research

Visual Detection of Multiple Nucleic Acids in a Capillary Array

1Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 2State Key Laboratory of Oncogenes and Related Genes, 3School of Biomedical Engineering, Shanghai Jiao Tong University, 4Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 5Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, 6Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University

JoVE 56597


 Bioengineering

Techniques of Sleeve Gastrectomy and Modified Roux-en-Y Gastric Bypass in Mice

1l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, 2CHU Nantes, Institut des Maladies de l'Appareil Digestif, INSERM U913, 3l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, 4Service de Clinique Chirurgicale Digestive et Endocrinienne, CHU de Nantes

JoVE 54905


 Medicine

Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

1Department of Otolaryngology - Head and Neck Surgery, University of Missouri, 2Department of Communication Science and Disorders, University of Missouri, 3Department of Medicine, University of Missouri

JoVE 52319


 Medicine

Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair

1Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2Department of Orthopedic Surgery, Maastricht UMC+, 3Department of Orthopaedic Surgery, University Hospital RWTH, 4Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

JoVE 55381


 Bioengineering

A Bioluminescent and Fluorescent Orthotopic Syngeneic Murine Model of Androgen-Dependent and Castration-Resistant Prostate Cancer

1Department of Urology, Northwestern University Feinberg School of Medicine, 2The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 3Department of Pathology, Northwestern University Feinberg School of Medicine

Video Coming Soon

JoVE 57301


 JoVE In-Press

Basic Care Procedures

JoVE 10290

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Mice and rats account for over 90% of the animals used for biomedical research. The proper care of these research animals is critical to the outcome of experiments. There are general procedures that apply to the majority of these mice and rats, but some of the animals, such as the immunocompromised ones, require additional steps to be taken to sustain them for experimentation. Commonly used immunocompromised mice include those that have naturally occurred in inbred mice and those that have been created through genetic engineering. The first immunocompromised mice used in research were "nude" mice. The BALB/c Nude (nu) mouse was discovered in 1966, within a BALB/c colony that was producing mice lacking both hair and a thymus. These athymic mice have an inhibited immune system that is devoid of T cells. The value of this animal was soon discovered for the use in studies of microbial infections, immune deficiencies, and autoimmunity. Although not as commonly used as the nude mouse, there is also a nude rat. The nude rat is T cell deficient and shows depleted cell populations in thymus-dependent areas of peripheral lymphoid organs. Another naturally occurring immune deficient mouse is the severe comb


 Lab Animal Research

Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay

1Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 2Department of Molecular Genetics and Microbiology, Duke University Medical Center, 3Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, 4Institute of Health Science, Chinese Academy of Science/Shanghai Jiao Tong University School of Medicine

JoVE 55831


 Neuroscience

Low-stress Route Learning Using the Lashley III Maze in Mice

1Department of Chemistry, Pennsylvania State University, 2Center for Developmental and Health Genetics, Pennsylvania State University, 3Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 4Huck Institute of the Life Sciences, Pennsylvania State University, 5California NanoSystems Institute, University of California, Los Angeles, 6Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles

JoVE 1786


 Neuroscience

12345678990
More Results...