Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Food Supply: The production of food and its movement from point of origin to use or consumption.

What is Genetic Engineering?

JoVE 10806

Genetic engineering is the process of modifying an organism’s DNA to introduce new, desirable traits. Many organisms, from bacteria to plants and animals, have been genetically modified for academic, medical, agricultural, and industrial purposes. While genetic engineering has definite benefits, ethical concerns surround modifying humans and our food supply.

Genetic engineering is possible because the genetic code—the way information is encoded by DNA—and the structure of DNA are universal among all life forms. As a result, an organism’s genetic code may be modified in several ways. The nucleotide sequence may be selectively edited by using techniques such as the CRISPR/Cas9 system. Known as the "molecular scissors," the CRISPR/Cas9 system is an innate, prokaryotic immune response that has been co-opted for editing genetic information. A gene may also be removed from an organism to create a “knockout,” or introduced to create a “knockin,” through a process called gene targeting. This method relies on homologous recombination—genetic exchange between DNA molecules that share an extended region with similar sequences—to modify an endogenous gene. Scientists can also insert a gene from one organism into the genome of another, resulting in a transgenic organism. Generally, DNA

 Core: Biology

Recombinant DNA

JoVE 10808

Scientists create recombinant DNA by combining DNA from different sources—often, other species—in the laboratory. DNA cloning allows researchers to study specific genes by inserting them into easily manipulated cells, such as bacteria. Organisms that contain recombinant DNA are known as genetically modified organisms (GMOs). Recombinant DNA technology produces organisms with new genes that can benefit science, medicine, and agriculture. Creation of recombinant DNA involves inserting a gene of interest into a vector—a vehicle that carries foreign DNA into host cells for DNA replication and protein expression. The most commonly used cloning vectors are plasmids, small circular pieces of DNA that replicate independently from the host’s chromosomal DNA. To create recombinant DNA, both the donor DNA, including the gene of interest, and the vector are cut at specific nucleotide sequences—called restriction sites—using restriction enzymes. The enzyme DNA ligase seals the sugar-phosphate backbone where the gene of interest and plasmid connect. The result is a recombinant DNA molecule consisting of a vector with an integrated piece of donor DNA—called an insert. A scientist may then introduce this hybrid DNA molecule into a host organism—typically bacteria or yeast—where it easily and rapidly replicat

 Core: Biology

Fundamentals of Breeding and Weaning

JoVE 10293

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Millions of mice and rats are bred for use in biomedical research each year. Worldwide, there are several large commercial breeding facilities that supply mice to research laboratories, but many facilities choose to also breed mice and…

 Lab Animal Research

Biofuels: Producing Ethanol from Cellulosic Material

JoVE 10014

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In this experiment, cellulosic material (such as corn stalks, leaves, grasses, etc.) will be used as a feedstock for the production of ethanol. The cellulosic material is first pretreated (ground and heated), digested with enzymes, and then fermented with…

 Environmental Science

Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen

1Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 2Laboratory of Functional Device, Institute of Advanced Technology, Universiti Putra Malaysia, 3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 4La Trobe Institute for Molecular Science, La Trobe University

JoVE 56585


Empirical, Metagenomic, and Computational Techniques Illuminate the Mechanisms by which Fungicides Compromise Bee Health

1Vegetable Crop Research Unit, USDA-ARS, 2Department of Entomology, University of Wisconsin-Madison, 3Department of Horticulture, University of Wisconsin-Madison, 4Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, 5Department of Bacteriology, University of Wisconsin-Madison, 6Laboratory of Genetics, Genome Center of Wisconsin, 7DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 8J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison

JoVE 54631


An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging

1Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 2Department of Information Engineering, University of Florence, 3Department of Engineering, Roma Tre University, 4FTMTR&D/SPA, STMicroelectronics, 5Brain Connectivity Center, BCC, Istituto Neurologico Nazionale Fondazione C. Mondino I.R.C.C.S., 6Department of Molecular Medicine - Unit of Pathology, University of Pavia, Foundation IRCCS Policlinico San Matteo

JoVE 55798

More Results...