Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal

Filter by science education

 
 
Genes, Viral: The functional hereditary units of Viruses.

Methodology for the Study of Horizontal Gene Transfer in Staphylococcus aureus

1Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 2Department of Basic Biomedical Science, Universidad Europea de Madrid, 3Human Biology Program, School of Integrative and Global Majors, University of Tsukuba, 4Laboratory of Nosocomial Infections, Department of Bacteriology, Centro Nacional de MicrobiologÍa, Instituto de Salud Carlos III, 5Division of Microbiology, Department of Medicine, School of Medicine, Universidad Complutense, 6Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur, Paris, France, 7ERL3526, CNRS, Paris, France

JoVE 55087


 Immunology and Infection

Neuronal Transfection Methods

JoVE 5215

Transfection - the process of transferring genetic material into cells - is a powerful tool for the rapid and efficient manipulation of gene expression in cells. Because this method can be used to silence the expression of specific proteins or to drive the expression of foreign or modified proteins, transfection is an extremely useful tool in the study of the cellular and molecular processes that govern neuron function. However, mature neurons have a number of properties that make them difficult to transfect, so specialized techniques are required for the genetic manipulation of this cell type. This video reviews the principles and rationale behind transfecting neurons. Three common strategies for neuronal transfection are discussed, including nucleofection, gene-gun, and viral transduction. In addition to describing how each of these techniques overcomes the challenges associated with transfecting neurons, the presentation includes a description of how all three methods are performed. Finally, several applications of neuronal transfection are introduced, such as the expression of fluorescent tubulin proteins to visualize neuron morphology, and selective gene silencing to generate a cell culture model of Parkinson’s disease.


 Neuroscience

Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons

1Department of Physiological Genomics, Institute of Physiology, Ludwig Maximilians University Munich, 2Tumor Biology Lab, Neurosurgical Clinic, Ludwig-Maximilians University Munich, 3Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, 4Institute of Physiological Chemistry and Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz

JoVE 51433


 Neuroscience

Mammalian Cell Division in 3D Matrices Via Quantitative Confocal Reflection Microscopy

1Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 2Johns Hopkins Physical Sciences - Oncology Center, Johns Hopkins University, 3Department of Biomedical Engineering, Johns Hopkins University, 4Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine

Video Coming Soon

JoVE 56364


 JoVE In-Press

Use of a Piglet Model for the Study of Anesthetic-induced Developmental Neurotoxicity (AIDN): A Translational Neuroscience Approach

1Department of Anesthesiology, Ohio State University College of Medicine, 2Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, 3Department of Anaesthesia and Critical Care Medicine, University of Toronto, 4Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, 5Department of Pathology and Anatomy, Ohio State University College of Medicine, 6Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital

JoVE 55193


 Medicine

An Overview of Genetic Engineering

JoVE 5552

Genetic engineering – the process of purposefully altering an organism’s DNA – has been used to create powerful research tools and model organisms, and has also seen many agricultural applications. However, in order to engineer traits to tackle complex agricultural problems such as stress tolerance, or to realize the promise of gene therapy for treating human diseases, further advances in the field are still needed. Important considerations include the safe and efficient delivery of genetic constructs into cells or organisms, and the establishment of the desired modification in an organism’s genome with the least “off-target” effects. JoVE’s Overview of Genetic Engineering will present a history of the field, highlighting the discoveries that confirmed DNA as the genetic material and led to the development of tools to modify DNA. Key questions that must be answered in order to improve the process of genetic engineering will then be introduced, along with various tools used by genetic engineers. Finally, we will survey several applications demonstrating the types of experimental questions and strategies in the field today.


 Genetics

Investigating the Effects of Probiotics on Pneumococcal Colonization Using an In Vitro Adherence Assay

1Pneumococcal Research, Murdoch Childrens Research Institute, 2Allergy & Immune Disorders, Murdoch Childrens Research Institute, 3Department of Otolaryngology, The University of Melbourne, 4Department of Microbiology & Immunology at the Peter Doherty Institute for Infection & Immunity, The University of Melbourne

JoVE 51069


 Immunology and Infection

Partial Optic Nerve Transection in Rats: A Model Established with a New Operative Approach to Assess Secondary Degeneration of Retinal Ganglion Cells

1Aier School of Ophthalmology, Central South University, Changsha, China, 2Institute of Immunology, Tsinghua University School of Medicine, Beijing, China, 3Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China, 4Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China

JoVE 56272


 Neuroscience

Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice

1Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, 2Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 3Department of Neurosurgery, University of California, San Diego, 4Institute of Neurobiology, Slovak Academy of Sciences

JoVE 55770


 Neuroscience

Expression Profiling with Microarrays

JoVE 5547

Microarrays are important tools for profiling gene expression, and are based on complementary binding between probes that are attached to glass chips and nucleic acids derived from samples. Using these arrays, scientists can simultaneously evaluate the expression of thousands of genes. In addition, the expression profiles of different cells or tissue types can be compared, allowing researchers to deduce how the expression of different genes change during biological processes, and thus gain insight into how the genes may function in pathways or networks.Here, JoVE explains the principles behind microarrays. This is followed by a general protocol for performing a microarray experiment, and a brief introduction to analyzing microarray data. We end on a discussion of how scientists are currently using microarrays, for example to compare gene expression between different cell types derived from cancerous and non-cancerous tissues, to study important biological problems.


 Genetics

Electroporation of Functional Bacterial Effectors into Mammalian Cells

1Biological Sciences Division, Pacific Northwest National Laboratory, 2Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, 3Structural Proteomics Group, Ontario Center for Structural Proteomics, University of Toronto, 4Center for Bioproducts and Bioenergy, Washington State University

JoVE 52296


 Immunology and Infection

1567891052
More Results...