Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Guanine Nucleotides:

Epigenetic Regulation

JoVE 10803

Epigenetic mechanisms play an essential role in healthy development. Conversely, precisely regulated epigenetic mechanisms are disrupted in diseases like cancer.

In most mammals, females have two X chromosomes (XX) while males have an X and a Y chromosome (XY). The X chromosome contains significantly more genes than the Y chromosome. Therefore, to prevent an excess of X chromosome-linked gene expression in females, one of the two X chromosomes is randomly silenced during early development. This process, called X-chromosome inactivation, is regulated by DNA methylation. Scientists have found greater DNA methylation at gene promoter sites on the inactive X chromosome than its active counterpart. DNA methylation prevents the transcription machinery from attaching to the promoter region, thus inhibiting gene transcription. Abnormal DNA methylation plays an important role in cancer. The promoter region of most genes contains stretches of cytosine and guanine nucleotides linked by a phosphate group. These regions are called CpG islands. In healthy cells, CpG islands are not methylated. However, in cancer cells, CpG islands in the promoter regions of tumor suppressor genes or cell cycle regulators are excessively methylated. Methylation turns off the expression of these genes, allowing cancer cells to divide rapidly and uncontrollably.

 Core: Gene Expression

Genetic Screens

JoVE 5542

Genetic screens are critical tools for defining gene function and understanding gene interactions. Screens typically involve mutating genes and then assessing the affected organisms for phenotypes of interest. The process can be “forward”, where mutations are generated randomly to identify unknown genes responsible for the phenotypes, or it can be…

 Genetics

Generation, Amplification, and Titration of Recombinant Respiratory Syncytial Viruses

1UMR 1173 Institut national de la santé et de la recherche médicale (INSERM), Université de Versailles St. Quentin, 2UR892 Institut national de la recherche agronomique (INRA), Unité de virologie et immunologie moléculaires, 3Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Ambroise Paré, Laboratoire de Microbiologie

JoVE 59218

 Immunology and Infection
More Results...