Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Histone Code: The specific patterns of Post-translational protein modification of Histones, i.e. histone Acetylation; Methylation; Phosphorylation; and ubiquitination, at specific amino acid residues, that are involved in assembly, maintenance, and modification of different chromatin structural states, such as Euchromatin and Heterochromatin.
 JoVE Engineering

3D Printing of Biomolecular Models for Research and Pedagogy

1Department of Physics, Brandeis University, 2Bioinformatics and Computational Biosciences Branch (BCBB), NIH/NIAID/OD/OSMO/OCICB, 3Library/LTS/MakerLab, Brandeis University, 4Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, 5Winship Cancer Institute, Emory University School of Medicine


JoVE 55427

 JoVE Chemistry

Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates

1Laboratory for Molecular Cancer Biology, Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 2Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University


JoVE 53563

 Science Education: Essentials of Genetics

An Overview of Gene Expression

JoVE Science Education

Gene expression is the complex process where a cell uses its genetic information to make functional products. This process is regulated at multiple stages, and any misregulation could lead to diseases such as cancer.

This video highlights important historical discoveries relating to gene expression, including the understanding of how distinct combinations of DNA bases encode the amino acids that make up proteins. Key questions in the field of gene expression research are explored, followed by a discussion of several techniques used to measure gene expression and investigate its regulation. Finally, we look at how scientists are currently using these techniques to study gene expression.

 JoVE Biology

Quantitation of γH2AX Foci in Tissue Samples

1Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 2Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 3Department of Pathology, The University of Melbourne, 4Department of Allergy and Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, 5Department of Pediatrics, The University of Melbourne


JoVE 2063

 JoVE Bioengineering

Describing a Transcription Factor Dependent Regulation of the MicroRNA Transcriptome

1Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, 2The Center of Nanoscience and Nanotechnology, Tel Aviv University, 3Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 4Department of Leukemia, The University of Texas MD Anderson Cancer Center


JoVE 53300

 Science Education: Essentials of Genetics

An Overview of Epigenetics

JoVE Science Education

Since the early days of genetics research, scientists have noted certain heritable phenotypic differences that are not due to differences in the nucleotide sequence of DNA. Current evidence suggests that these “epigenetic” phenomena might be controlled by a number of mechanisms, including the modification of DNA cytosine bases with methyl groups, the addition of various chemical groups to histone proteins, and the recruitment of protein factors to specific DNA sites via interactions with non-protein-coding RNAs.In this video, JoVE presents the history of important discoveries in epigenetics, such as X-chromosome inactivation (XCI), the phenomenon where an entire X-chromosome is silenced in the cells of female mammals. Key questions and methods in the field are reviewed, including techniques to identify DNA sequences associated with different epigenetic modifications. Finally, we discuss how researchers are currently using these techniques to better understand the epigenetic regulation of gene function.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

Quantitative Analysis of Chromatin Proteomes in Disease

1Department of Anesthesiology, David Geffen School of Medicine at UCLA, 2Department of Medicine, David Geffen School of Medicine at UCLA, 3Department of Physiology, David Geffen School of Medicine at UCLA, 4Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah


JoVE 4294

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

Retroviral Scanning: Mapping MLV Integration Sites to Define Cell-specific Regulatory Regions

1Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, 2Laboratory of chromatin and gene regulation during development, 3Institute for Biomedical Technologies, CNR, 4Généthon, 5Department of Life Sciences, University of Modena and Reggio Emilia, 6Paris Descartes, 7Sorbonne Paris Cité University, 8Imagine Institute

Video Coming Soon

JoVE 55919

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

Optimized Protocol for the Extraction of Proteins from the Human Mitral Valve

1Centro Cardiologico Monzino IRCCS, 2Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS, 3Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 4Department of Cardiovascular Disease, Development and Innovation Cardiac Surgery Unit, IRCCS Centro Cardiologico Monzino

Video Coming Soon

JoVE 55762

Results below contain some, but not all of your search terms.
12345678914
More Results...
Waiting
simple hit counter