Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Hydrogen Bonding: A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds.

Magnetic and Thermal-sensitive Poly(N-isopropylacrylamide)-based Microgels for Magnetically Triggered Controlled Release

1Institute of Polymer Science and Engineering, National Taiwan University, 2Department of Materials Engineering, Ming Chi University of Technology, 3Department of Metallurgy and Materials Engineering, Bandung Institute of Technology and Science, 4Department of Chemical Engineering, National Taiwan University, 5Department of Materials Science and Engineering, National Taiwan University

JoVE 55648


 Bioengineering

Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

1Department of Physics, University of California at Berkeley, 2Department of Chemistry, University of California at Berkeley, 3Department of Chemical and Biomolecular Engineering, University of California at Berkeley, 4National Institute for Materials Science (Japan), 5Materials Sciences Division, Lawrence Berkeley National Laboratory, 6Kavli Energy NanoSciences Institute, University of California at Berkeley and Lawrence Berkeley National Laboratory

JoVE 52711


 Engineering

Ideal Gas Law

JoVE 5537

Source: Laboratory of Dr. Andreas Züttel - Swiss Federal Laboratories for Materials Science and Technology

The ideal gas law describes the behavior of most common gases at near-ambient conditions and the tendency of all chemical matter in the dilute limit. It is a fundamental relationship between three measurable macroscopic system variables (pressure, temperature, and volume) and the number of molecules of gas in the system, and is therefore an essential link between the microscopic and the macroscopic universes. The history of the ideal gas law dates to the middle of the 17th century when the relationship between the pressure and volume of air was found to be inversely proportional, an expression confirmed by Robert Boyle and which we now refer to as Boyle’s law (Equation 1). P V-1 (Equation 1) Unpublished work by Jacques Charles in the 1780s, which was extended to numerous gases and vapors by Joseph Louis Gay-Lussac and reported in 1802, established the directly proportional relationship between the absolute temperature and volume of a gas. This relationship is called Charles's law (Equ


 Essentials of General Chemistry

Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles

1Department of Bioengineering, University of Illinois at Urbana-Champaign, 2Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, 3Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 4Program of Study and Control of Tropical Diseases (PECET), University of Antioquia, 5Sealy Center for Vaccine Development, University of Texas Medical Branch, 6WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, 7Beckman Institute, University of Illinois at Urbana-Champaign

JoVE 52951


 Bioengineering

Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface

1Institute of Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zurich, 2Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 3Departamento de Química Inorgánica, Universidad de Granada, 4Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 5School of Chemistry, University of Nottingham, 6Condensed Matter Physics Center (IFMAC), Universidad Autónoma de Madrid, 7Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia)

JoVE 56020


 Chemistry

Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors

1Graduate School of Pure and Applied Science, University of Tsukuba, 2CNRS — Saint-Gobain, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), 3Nano Device Characterization Group, National Institute for Materials Science (NIMS), 4Sialon Unit, National Institute for Materials Science (NIMS)

JoVE 54249


 Chemistry

SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy

1Department of Cellular and Molecular Physiology, Yale University School of Medicine, 2Nanobiology Institute, Yale University, 3Department of Molecular Biophysics and Biochemistry, Yale University, 4Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS)

JoVE 54349


 Neuroscience

Controlling the Size, Shape and Stability of Supramolecular Polymers in Water

1Organic Chemistry Institute and CeNTech, Westfälische Wilhelms-Universität Münster, 2Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 3Laboratory of Materials and Interface Chemistry and Soft Matter Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology

JoVE 3975


 Engineering

Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering

1Department of Chemical Engineering, Rowan University, 2Department of Biological Sciences, Rowan University, 3Department of Biomedical Engineering, Drexel University

JoVE 53704


 Bioengineering

12345678916
More Results...