Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Induced Pluripotent Stem Cells: Cells from adult organisms that have been reprogrammed into a pluripotential state similar to that of Embryonic stem cells.

Induced Pluripotent Stem Cells

JoVE 10812

Stem cells are undifferentiated cells that divide and produce different types of cells. Ordinarily, cells that have differentiated into a specific cell type are post-mitotic—that is, they no longer divide. However, scientists have found a way to reprogram these mature cells so that they “de-differentiate” and return to an unspecialized, proliferative state. These cells are also pluripotent like embryonic stem cells—able to produce all cell types—and are therefore called induced pluripotent stem cells (iPSCs). iPSCs are potentially valuable in medicine, because a patient who needs a particular cell type—for instance, someone with a damaged retina due to macular degeneration—could receive a transplant of the required cells, generated from another cell type in their own body. This is called autologous transplantation, and it reduces the risk of transplant rejection that can occur when tissues are transplanted between individuals. To create iPSCs, mature cells such as skin fibroblasts or blood cells from a person are grown in culture. Then, genes for multiple transcription factors are delivered into the cells using a viral vector, and the transcription factor proteins are expressed using the cell’s machinery. The transcription factors then turn on many other genes that are expressed by embryonic stem cells, re

 Core: Biotechnology

Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors

1State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Division of Regenerative Medicine, Department of Medicine, Loma Linda University, 3Department of Orthopaedic Surgery, Loma Linda University, 4Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, 5Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, 6Collaborative Innovation Center for Cancer Medicine, 7Tianjin Key Laboratory of Blood Cell Therapy and Technology

JoVE 55091

 Developmental Biology

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids

1Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 2Laboratory of Medical Genetics, Fondazione IRCCS Ca´ Granda, Ospedale Maggiore Policlinico, 3Del E. Webb Center for Neuroscience, Aging & Stem Cell Research, Sanford-Burnham Medical Research Institute

JoVE 52885

 Developmental Biology

Rapid Neuronal Differentiation of Induced Pluripotent Stem Cells for Measuring Network Activity on Micro-electrode Arrays

1Department of Cognitive Neurosciences, Radboudumc, 2Donders Institute for Brain, Cognition and Behaviour, Radboud University, 3Department of Human Genetics, Radboudumc, 4Department of Molecular Developmental Biology, Radboud University

JoVE 54900

 Developmental Biology

RNA-based Reprogramming of Human Primary Fibroblasts into Induced Pluripotent Stem Cells

1Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, 2Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, 3Stem Cell Biobank and Disease Modeling Core, University of Colorado School of Medicine, Anschutz Medical Campus

JoVE 58687

 Developmental Biology

Induced Pluripotency

JoVE 5333

Induced pluripotent stem cells (iPSCs) are somatic cells that have been genetically reprogrammed to form undifferentiated stem cells. Like embryonic stem cells, iPSCs can be grown in culture conditions that promote differentiation into different cell types. Thus, iPSCs may provide a potentially unlimited source of any human cell type, which is a major breakthrough in the field of regenerative…

 Developmental Biology

An Introduction to Stem Cell Biology

JoVE 5331

Cells that can differentiate into a variety of cell types, known as stem cells, are at the center of one of the most exciting fields of science today. Stem cell biologists are working to understand the basic mechanisms that regulate how these cells function. These researchers are also interested in harnessing the remarkable potential of stem cells to treat human diseases.


Here,…

 Developmental Biology

Modeling Osteosarcoma Using Li-Fraumeni Syndrome Patient-derived Induced Pluripotent Stem Cells

1Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 2Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, 3Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, 4Women's Health Institute, Cleveland Clinic Foundation, 5Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, 6Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston

JoVE 57664

 Cancer Research

A Familial Hypercholesterolemia Human Liver Chimeric Mouse Model Using Induced Pluripotent Stem Cell-derived Hepatocytes

1Department of Medicine, University of Hong Kong-Shenzhen Hospital, 2The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 3School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 4Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, 5Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 6Research Centre of Heart, Brain, Hormone, and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, 7Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, University of Hong Kong and Guangzhou Institutes of Biomedicine and Health

JoVE 57556

 Developmental Biology

High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry

1Department of Biochemistry, Medical College of Wisconsin, 2Stanford Cardiovascular Institute, Stanford University School of Medicine, 3Department of Anesthesiology, Medical College of Wisconsin, 4Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, 5Division of Cardiology, Johns Hopkins University School of Medicine, 6Cardiovascular Research Center, Biotechnology and Bioengineering Center, Medical College of Wisconsin

JoVE 52010

 Biology

Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions

1Department of Chemical and Materials Engineering, National Central University, 2Department of Botany and Microbiology, King Saud University, 3Cathay Medical Research Institute, Cathay General Hospital, 4Graduate Institute of Systems Biology and Bioinformatics, National Central University, 5Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 6Department of Internal Medicine, Taiwan Landseed Hospital, 7Department of Zoology, Bharathiar University, 8Thiruvalluvar University

JoVE 57314

 Bioengineering

Serum Free Production of Three-dimensional Human Hepatospheres from Pluripotent Stem Cells

1MRC Centre for Regenerative Medicine, University of Edinburgh, 2UCL Great Ormond Street Institute of Child Health, University College London, 3Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, 4School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin

JoVE 59965

 Developmental Biology

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol

1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 3St. Vincent´s Clinical School, Faculty of Medicine, University of New South Wales, 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, 5Department of Developmental Biology, University of Science and Culture, 6Heart Centre for Children, The Children´s Hospital at Westmead, 7Sydney Medical School, University of Sydney, 8Department of Developmental Biology, University of Science and Culture, Tehran, Iran

JoVE 54276

 Developmental Biology

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund

JoVE 52333

 Developmental Biology

Physiologic Patient Derived 3D Spheroids for Anti-neoplastic Drug Screening to Target Cancer Stem Cells

1Department of Biomedical Engineering, University of Michigan, 2Department of Materials Science and Engineering, University of Michigan, 3Rogel Cancer Center, School of Medicine, University of Michigan, 4Macromolecular Science and Engineering, University of Michigan

JoVE 59696

 Cancer Research

Reprogramming Primary Amniotic Fluid and Membrane Cells to Pluripotency in Xeno-free Conditions

1Mitchell Cancer Institute, University of South Alabama, 2College of Medicine, University of South Alabama, 3Institute for Regenerative Medicine, University of Zurich, 4Department of Dermatology, University Hospital Zurich, 5Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich - Irchel Campus

JoVE 56003

 Developmental Biology

Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients

1Foundation Hubrecht Organoid Technology, 2Department of Pediatric Pulmonology, Regenerative Medicine Centre Utrecht, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3Department of Stem Cells and Cancer, Walter and Eliza Hall Institute of Medical Research, 4Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht

JoVE 55159

 Medicine

Rapid Detection of Neurodevelopmental Phenotypes in Human Neural Precursor Cells (NPCs)

1Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 2Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 3The Child Health Institute of NJ, Department of Obstetrics, Gynecology, and Reproductive Services, Rutgers Robert Wood Johnson Medical School, 4The Child Health Institute of NJ, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 5Department of Genetics, Rutgers University

JoVE 56628

 Developmental Biology
123456
More Results...